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ABSTRACT

It is widely accepted that the non-turbulent perturbations in modern telescopes arise from the instrumentation
systems, such as fans and cooling pumps, and from the mechanical vibrations induced by the wind or the telescope
tracking. In order to develop a properly control law to mitigate the vibrations effects, an accurate model of all
the mechanical vibrations is needed. In this paper, we model these vibrations as a sum of continuos-time damped
oscillators (the equivalent transfer function of discrete-time autoregressive second-order models) and we estimate
the oscillators parameters from discrete-time data based on Maximum Likelihood method. Finally, we utilize
our proposed method to estimate the vibrations frequency peaks at the LBTO.

Keywords: Vibration analysis, Active or adaptive optics

1. INTRODUCTION

In Adaptive Optics (AO) systems, a deformable mirror is utilized in order to compensate the wavefront dis-
tortions caused by the atmospheric turbulences, mechanical vibrations, wind shake, and tracking errors on the
astronomical images that are sensed by the wavefront sensor, see e.g.1,2

Mechanical vibrations have been a subject of study in different areas, such as AO,1,3–6 Signal Processing and
Communications.7 In particular, the main interest in mechanical vibrations within the AO community is due
to the great sensitivity that AO systems exhibit to the vibrations acting in the propagation of the science light.
This sensitivity has led to the identification of the main sources of vibrations, such as the wind and elements
within the instrumentation of the system (e.g. fans and cooling pumps), and the implementation of control laws
to effectively mitigate those vibrations.2,4, 8, 9

On the other hand, for the development and implementation of adequate control laws, accurate models of
the system are usually needed. In AO systems, a model that has been widely used in the literature is shown
in Fig. 1, where the AO closed-loop system consists of a wavefront sensor (WFS), a deformable mirror (DM),
and a controller (K), see e.g.,1,7 and ϕcor, ϕcor and ϕres are the amplitudes for the total disturbance phase, the
correction phase, and the residual phase, respectively.

A commonplace model for each one of the vibrations is the discrete-time second order autoregressive system,
see e.g.,1,4 yielding a stationary time series. These AR(2) systems, when excited by a white noise, are expected
to exhibit large peaks at the vibrations frequencies in their power spectral density plots. On the other hand,
a simple technique for estimating the frequencies associated with the mechanical vibrations in AO systems is
based on the well known periodogram, see e.g.8,9 The periodogram is, in general, a low complexity technique
that is widely utilized for estimating the power spectral density of a time series.10 However, the periodogram is
only a reliable and accurate estimator when the time series corresponds to sinusoidal waves at fixed frequencies
that are corrupted by additive noise. Moreover, “stationary time series are characterized by random changes of
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Figure 1. Block diagram for an AO closed-loop system.

frequency, amplitude, and phase. For this type of series, the sample spectrum, i.e. the periodogram, fluctuates
wildly and is not capable of any meaningful interpretation” [10, pag. 37]. Thus, a more adequate method for
modelling the vibrations is needed.

In5 an early work modelling the vibrations as continuos-time harmonic oscillators driven by noise was de-
veloped. Based on,11 the estimation of the parameters associated with the oscillators was carried out via the
computation of the prediction error and the Kalman filter within the Maximum Likelihood (ML) framework.

In this paper, we model the vibrations as continuous-time damped oscillator with initial condition different
from zero. The estimation of the damped oscillators parameters is carried out from discrete-time samples
utilizing ML.12–14 The corresponding optimization problem is solved utilizing a local optimization algorithm,
namely Interior Point through the Matlab function fmincon. We illustrate the behavior and benefits of our
technique via numerical simulations, and then we utilize the proposed method in on-sky data measurements
of the WFS and the accelerometers network data (OVMS15,16) of the Large Binocular Telescope Observatory
(LBTO). The results show that the frequency vibrations peaks (continuous-time) can be adequately estimated
using continuos-time damped oscillators from the corresponding discrete-time samples.

2. SYSTEM MODEL

The system of interest can be modeled as a linear combination of continuous-time damped oscillators driven by
noise:

y(t) =

m∑
i=1

βi
p2 + 2ζiαip + α2

i

ω̇i(t), (1)

where y(t) is the system output, βi is the oscillator gain of the i-th damped oscillator, αi is the vibration
frequency, ζi is the damping coefficient, m is the number of oscillators, p = d

dt and ω̇(t) is the (continuous-time)
zero-mean white gaussian noise. We assume that the noises ω̇i are not correlated with variance σ2

i = 1.

2.1 State Space Model

The model in (1) can be represented in state-space form as a continuous-time autoregressive system (CAR):

ẋ(t) = Ax(t) + κẇ(t), (2)

y(t) = Cx(t), (3)



where A ∈ R2m×2m, κ ∈ R2m×1 and C ∈ R1×2m are given by:

A =


0 1 0 · · · 0
−α2

1 −2ζ1α1 0 · · · 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · −α2

m −2ζnαm

 , (4)

κ =
[

0 β1 0 β2 · · · 0 βm
]T
, (5)

C =
[

1 0 1 0 · · · 1 0
]
. (6)

2.2 Equivalent Discrete-Time Model

Considering instantaneous sampling, non-zero initial conditions, and sampling period ∆, the equivalent discrete-
time state-space model for (1) is given by:

xk+1 = Adxk + vk, (7)

x(0) = x0, (8)

yk = Cxk, (9)

yk = CAkdx0 +

k−1∑
l=0

CAk−l−1
d vl, (10)

where Ad = eA∆, xk = x(tk), yk = y(tk), vk = v(tk) =
∫∆

0
eAηκω̇(tk+1−η)dη is a zero-mean white Gaussian noise

with variance Qd, and x0 is the initial condition.The matrices Ad and Qd can be computed from an extended
exponential matrix.5

Finally the vector of parameters to estimate is:

θ =
[
~αT ~ζT ~βT

]T
, (11)

where ~α = [α1 α2 · · · αm]
T

, ~ζ = [ζ1 ζ2 · · · ζm]
T

, and ~β = [β1 β2 · · · βm]
T

.

3. MAXIMUM LIKELIHOOD (ML) ESTIMATION

A widely used method in estimation problems is ML, where the goal is to obtain a set of parameters that best
explain the collected data, i.e. the parameters that make the given data most probable in the sense that the
likelihood function p(y0:N−1|θ), for the data of size N , is maximized.12 Thus, the following optimization problem
should be solved:

θ̂ML = arg max
θ

LN (θ). (12)

Equivalently, since the logarithm function is a monotonically increasing function, we can obtain the ML estimator
from

θ̂ML = arg min
θ
− `N (θ), (13)

where `N (θ) = log [LN (θ)] is the log-likelihood function.

On the other hand, in the System Identification community, it is well known that the log-likelihood function
can be computed from the decomposition of the prediction error as (see e.g.12,13).

`N (θ) = −1

2

N∑
k=1

ε2
k(θ)

Λk(θ)
− 1

2

N∑
k=1

log [Λk(θ)] , (14)



where εk(θ) is the prediction error defined by

εk(θ) = yk − CAkdx0 − E {yk|y0:k−1, θ} , (15)

and
Λk(θ) = E

{
ε2
k|y0:k−1, θ

}
(16)

is the prediction error variance, being both directly obtained from the Kalman filter13 assuming that y0 is
normally distributed with mean ŷ0|−1(θ) and variance Σ0|−1(θ). Then εk(θ) and Λk(θ) are computed as

εk(θ) = yk − CAkdx0 − Cx̂k|k−1, (17)

Λk(θ) = CΣk|k−1C
T . (18)

On the other hand, the log-Likelihood function (`N (θ)) for the damped oscillator in (1) is non-convex. Then,
it is necessary to use numerical methods to solve the minimization problem. Here, we use a local optimization
algorithm based on the Interior-Point Optimization method17 through the Matlab function fmincon.

4. NUMERICAL EXAMPLES

4.1 Simulated Data

In order to validate our approach, we consider a continuous-time damped oscillator system given by:

y(t) =
β

p2 + 2ζαp + α2
ω̇(t). (19)

For the simulation we use one of the typical vibration frequencies for an AO system , namely α = 20 Hz,4

with ζ = 0.1 and β = 1. The sample time is ∆ = 100 µs, the sample length is N = 10000, and we run 100 Monte
Carlo simulations. We assume that the initial condition of the state is x0 = [0.2 0.1]T and thus the vector of

parameters to identify is θ = [α ζ β]
T

.

The simulation results show that the parameters estimation are very accurate, exhibiting a very small variance.
The simulation results are summarized on Table 1.

4.2 Real Data

For the modelling of vibrations peaks at the LBTO, on-sky data from the WFS and OVMS system were recorded
during March 31, 2018 observing run. For the estimation, 12 damped oscillators were considered, and the data
was separated into the x-axis and y-axis movement of the focal point, In Fig. 2 we show the estimated power
spectral density (PSD) of movement on the x-axis of the focal point that was captured by the OVMS system.
The peaks in the estimated PSD were superimposed with the oscillators frequencies that were estimated using
the approach presented in this paper. It is clear that the main peaks of the estimated PSD are identified as such
from the continuous-time damped oscillators model here proposed.

In Fig. 3 we show the estimated power spectral density (PSD) of movement on the y-axis of the focal point
that was captured by the OVMS system and the oscillators frequencies that were estimated using the approach
presented in this paper.

The estimation results are summarized in Table 2 for the 12 oscillators on the x-axis and in Table 3 for the
y-axis.

Table 1. Statistics of the estimation of the parameters.

θ Real Value Estimated Value
α 20 20.0053± 0.0222
ζ 0.1 0.0998± 0.0011
β 1 0.9991± 0.0067
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Figure 2. PSD of movement on x-axis of the focal point captured by the OVMS system.

Table 2. Estimation of movement on x-axis of the focal point captured by the OVMS system.
Right side Left side

i α̂ ζ̂ β̂ α̂ ζ̂ β̂

1 2.42 0.287 70.99 2.99 0.256 52.52
2 7.57 0.042 69.94 7.21 0.001 44.54
3 12.93 0.001 93.99 8.48 0.988 46.29
4 11.47 0.015 31.19 10.86 0.002 39.56
5 18.13 0.002 0.50 19.19 0.015 87.89
6 20.01 0.055 78.56 18.13 0.004 83.83
7 19.04 0.245 69.97 25.48 0.012 32.59
8 29.81 0.139 9.00 26.79 0.001 0.51
9 31.58 0.388 39.32 33.66 0.987 9.91
10 39.70 0.988 5.06 37.35 0.001 6.54
11 44.49 0.053 127.64 43.08 0.001 43.23
12 54.91 0.001 27.87 53.75 0.002 18.72

Table 3. Estimation of movement on y-axis of the focal point captured by the OVMS system.
Right side Left side

i α̂ ζ̂ β̂ α̂ ζ̂ β̂

1 3.78 0.989 87.81 2.82 0.001 23.88
2 2.08 0.001 27.06 3.95 0.597 47.04
3 11.79 0.001 26.34 9.27 0.267 110.28
4 8.82 0.001 79.77 14.20 0.990 0.50
5 14.59 0.086 177.88 18.01 0.016 144.52
6 25.26 0.001 0.50 25.03 0.073 79.85
7 22.04 0.002 97.74 25.79 0.019 58.82
8 14.00 0.307 164.29 39.99 0.163 66.72
9 27.78 0.014 1.39 33.69 0.012 28.12
10 36.63 0.047 116.68 42.61 0.047 48.59
11 42.94 0.001 55.53 42.22 0.001 0.51
12 34.04 0.062 64.43 53.16 0.032 54.96
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Figure 3. PSD of movement on y-axis of the focal point captured by the OVMS system.

Figure 4 and Fig. 5 show the estimated PSD of the movement on the x-axis and y-axis of the focal point
captured with the WFS, respectively. Table 4 and Table 5 show the summary of the estimation of the parameters
of the damped oscillators for the x-axis and y-axis, respectively.
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Figure 4. PSD of movement on x-axis of the focal point captured with the WFS.



Table 4. Estimation of movement on x-axis of the focal point captured with the WFS.
Right side Left side

i α̂ ζ̂ β̂ α̂ ζ̂ β̂

1 9.98 0.987 0.50 9.99 0.988 0.50
2 11.97 0.988 0.50 8.42 0.987 0.50
3 13.98 0.988 0.50 12.87 0.989 0.50
4 15.98 0.988 0.50 15.99 0.988 0.50
5 19.97 0.988 0.50 19.17 0.988 0.50
6 27.67 0.988 0.50 20.05 0.988 0.50
7 33.58 0.990 0.50 27.20 0.988 0.50
8 33.87 0.987 0.50 27.77 0.988 0.50
9 44.96 0.864 0.50 36.61 0.481 0.50
10 41.18 0.987 0.50 38.57 0.987 0.50
11 46.78 0.988 0.50 47.39 0.984 0.50
12 59.95 0.983 0.50 59.98 0.989 0.50
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Figure 5. PSD of movement on y-axis of the focal point captured with the WFS.
Table 5. Estimation of movement on y-axis of the focal point captured with the WFS.

Right side Left side

i α̂ ζ̂ β̂ α̂ ζ̂ β̂

1 9.97 0.987 0.50 9.98 0.987 0.50
2 11.99 0.988 0.50 11.98 0.988 0.50
3 13.97 0.988 0.50 13.98 0.988 0.50
4 15.97 0.988 0.50 15.98 0.988 0.50
5 19.97 0.988 0.50 19.98 0.988 0.50
6 27.63 0.988 0.50 24.01 0.988 0.50
7 33.48 0.985 0.50 30.75 0.988 0.50
8 33.74 0.987 0.50 31.23 0.988 0.50
9 44.98 0.860 0.50 41.33 0.860 0.50
10 41.38 0.988 0.50 40.22 0.985 0.50
11 46.54 0.987 0.50 45.31 0.989 0.50
12 59.29 0.989 0.50 59.50 0.989 0.50



5. CONCLUSION

In this paper we proposed a novel continuos-time model for the vibrations and an ML-based technique to
estimate the parameters from discrete-time samples. In the log-likelihood function we considered the parameters
to estimate and the initial condition of the oscillators. The estimation was performed using local optimization,
applying our method to on-sky data from the Large Binocular Telescope, which allowed us to estimate the
principal peaks that arises from the estimated PSD of the system. In addition to the frequency, our method also
allows to estimate the gain and the damping coefficient of the oscillators.
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itzsch, T. E. Connors, P. M. Hinz, T. J. McMahon, D. S. Ashby, J. G. Brynnel, N. J. Cushing, T. Edgin,
J. D. Esguerra, R. F. Green, J. Kraus, J. Little, U. Beckmann, and G. P. Weigelt, “Ovms: the optical path
difference and vibration monitoring system for the lbt and its interferometers,” Proceedings SPIE 7734,
pp. 7734 –7734 – 8, 2010.
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