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ABSTRACT

A number of experiments have demonstrated that turbulence profiles can change very rapidly. However, turbu-
lence profiling techniques typically rely on estimating correlations from up to a few minutes of data, delivering
accurate profiles at the cost of a time delay. We present a novel method for tracking the turbulence profile in real
time using AO telemetry. This method can provide complementary information without requiring any additional
instruments, and may provide new insights into turbulence dynamics.
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1. INTRODUCTION

Astronomical Adaptive Optics (AO) systems refer to technology deployed on ground-based optical telescopes,
improving imaging quality by providing real-time compensation of disruptive optical aberrations caused by atmo-
spheric turbulence.1 They are poised to become mainstream in the next generation instruments and telescopes.

After the successful application on single-conjugated AO systems, current and soon-to-be designs attempt to
provide correction over larger fields of view, typically on the order of tens of arcseconds to a few arcminutes.2

The latter rely on the tomographic estimation (and subsequent correction) of the turbulence above the telescope,
which is an ill-posed problem.2,3 To this end, several measurements along different lines-of-sight are used before
applying the optical correction by driving deformable mirrors with optimal opposite shapes.4 On account of
the small angles (around 1–7 arcmin) and limited computational resources, any successful solution strategy
in atmospheric tomography is based on reliable statistical modeling of the turbulence, such as the turbulence
profile.5,6

Several methods exist for finding the turbulence profile, which is given as a vertical distribution of the
refractive index structure constant C2

n. The most common methods are the Multi Aperture Scintillation Sen-
sor (MASS),7 SLOpe Detection And Ranging (SLODAR)8,9 and SCIntillation Detection And Ranging (SCI-
DAR).10,11 All of these methods rely on averaging data over a period of up to a few minutes in order to estimate
correlations, either from scintillation patterns or from wavefront sensor (WFS) measurements. This produces
high-quality measurements of the correlations, which can be leveraged to obtain high-resolution profiles,12 or to
recover more information about the turbulence statistics such as the outer scale13–15 or even the power spectral
density.16 However, this averaging also presents a fundamental limitation in terms of temporal resolution, which
means that the profile used as a prior for atmospheric tomography may be based on data from several minutes
before.

In this paper we address the limitation in temporal resolution by proposing a novel method for tracking the
turbulence profile evolution in real time using WFS measurements from the AO system. At each observation
partial information of the current turbulence profile is propagated to the WFS data due to the dependence of the
turbulence layer statistics on the C2

n-profile. This dependence gives rise to a likelihood probability distribution of
observed data given the state of the turbulence profile. Here, we propose the use of a particle filtering algorithm
that utilizes such an observational model with a simple random walk model for the turbulence profile evolution.
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To the best of our knowledge, there is no experimental data or method available describing the dynamics of the
C2

n-profile beyond the time resolution achieved by SLODAR or SCIDAR measurements. Therefore, our method
has not only the potential to improve tomographic reconstruction or point spread function estimation in terms of
more accurate C2

n-profiles, but it can also reveal new interesting information of atmospheric turbulence dynamics
when applied to real data. In this work, we demonstrate the performance of a particle filtering approach using
simulated time-dependent profiles with temporal resolution of a tenth of a second. The averages of these profiles
over longer time periods agree with real measurements obtained with Stereo-SCIDAR at Paranal.12 However,
since there is no information on how strong the dynamics might be, the role of our simulated profile is merely
to indicate what kind of fast changes or oscillations in the C2

n-profile can be tracked.

We begin in Section 2 by describing how the turbulence profile relates to the Shack–Hartmann wavefront
sensor measurements obtained by an AO system, and present a simplified model for how the turbulence profile
evolves in time; these are crucial building blocks for developing a filtering algorithm. In Section 3 we give
a general description of filtering methods, and present the specific particle filtering algorithm we have used.
Section 4 describes our numerical simulations of an AO system, complete with simulated boiling and a time-
dependent turbulence profile based on real SCIDAR profiles. The results obtained from applying our algorithm
to the simulated data are presented in Section 5, followed by a discussion of the results and future prospects in
Section 6.

2. MODELING TURBULENCE AND ITS EVOLUTION

Developing an algorithm for tracking changes in the turbulence profile in real time requires a good understanding
of how WFS measurements depend on the profile, as well as a model for how the profile evolves in time. We
begin with the former as it is readily available from atmospheric tomography.

We assume that the atmospheric turbulence can be well-represented by K two-dimensional layers, which
can be discretized to obtain vectors φ = (φ1, . . . ,φK) representing the phase fluctuations for each layer. We
further assume that these layers are independent, isotropic and stationary, and that they follow the von Kármán
model of turbulence. Using this model we can derive a covariance matrix Ck for each layer, and consider φ as
a Gaussian vector such that φ ∼ N (0,C(ρ)) ∗, where

C(ρ) =

ρ1C1 . . . 0
...

. . .
...

0 . . . ρKCK

 . (1)

Above, the covariance matricesCk for each layer are given by the von Kármán model and ρ = (ρ1, . . . , ρK)T is the
turbulence profile which gives the turbulence strength for each layer. Given this layered model for atmospheric
turbulence, we can then describe the measurement model for Shack–Hartmann WFSs by

s = Aφ+ ε, φ ∼ N (0,C(ρ)), (2)

where s is a vector of WFS measurements, A is the atmospheric tomography operator, and ε ∼ N (0,Γ) is the
photon noise of the WFS, which we model as Gaussian white noise with covariance matrix Γ. Note that since
our model for the turbulence φ depends on the turbulence profile ρ, this measurement model gives us an implicit
connection between the turbulence profile and the WFS measurements s.

It is important to note that while (2) does provide a link between the turbulence profile and WFS measure-
ments, data from a single WFS does not in fact carry significant information about the turbulence profile, as
there is no way to distinguish between the different layers. Instead, we will need measurements from multiple
wavefront sensors along different lines-of-sight, similar to the measurement setup used in SLODAR, where cor-
relations of measurements from several WFSs are used to recover the turbulence profile.8,9 However, while in
SLODAR these correlations are modeled explicitly and estimated over long periods of time, our method will only
require the implicit connection between ρ and s provided by the model in (2).

∗The notation x ∼ N (m,C) indicates that the random vector x follows the multivariate normal distribution with
mean m and covariance matrix C.
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Figure 1. Turbulence profiles obtained with Stereo-SCIDAR at Paranal on the night beginning 8th March 2017, with an
average temporal resolution of 140 s; the gaps in the data are due to missing profiles.12 As can be seen from the image,
the profiles can undergo rapid changes where individual layer strengths change by almost an order of magnitude between
consecutive profiles. This is particularly evident in the last nine profiles on the right, where the strength of the layer at
9 km oscillates several times, with the peaks being up to ten times stronger than the lows.

As mentioned previously, we will also need a model for the temporal evolution of ρ. Fig. 1 shows an example of
this evolution, based on turbulence profiles obtained at Paranal with Stereo-SCIDAR. The profile can sometimes
change very rapidly, with the strength of individual layers changing by an order of magnitude in a matter of
minutes. However, there is no discernible pattern to these changes, as the fluctuations appear to be quite
random. Since any physical model for this evolution would likely be too complicated and depend on many
external variables such as wind speeds and directions, we have instead chosen to use a very simple evolution
model given by

ρj+1 = ρj + ηj , ηj ∼ N (0,Σ), (3)

where the index j indicates the timestep and ηj is Gaussian white noise with a covariance matrix Σ. The
evolution is thus modeled as a random normally distributed change to the turbulence profile. While this model
is indeed very simple, it is well-suited for filtering methods and works well in practice, as will become evident in
Section 5.

3. PARTICLE FILTERING

Our goal is to track the evolution of the turbulence profile in real time based on measurements obtained from
the AO system. This is an example of a so-called filtering problem, where the aim is to produce the best possible
estimate of the current state of a dynamical system based on noisy measurements of that system.17 The estimate
is given as a probability distribution on the state variables, which is updated as new measurements are obtained.

Filtering problems have two key components: an evolution model for the state variables that we are interested
in, and an observational model describing how the data obtained from the dynamical system depends on those
variables. In statistical filtering, evolution and observation are described by conditional probability distributions:
what is the probability density of the next state ρj+1 given ρj and what is the likelihood of measurement outcome
sj given ρj?

The evolution model given in (3) yields the distribution of P(ρj+1 | ρj). However, the observational model
is not implied from (2) trivially as the WFS measurements sj are only implicitly connected to the turbulence



profile ρj through the prior for the atmospheric turbulence φj . However, by integrating over the turbulence
layer variables it can be derived that

P(sj |ρj) ∼ N (0,Γ +ATC(ρj)A). (4)

Notice carefully that in the millisecond time scale we have frozen flow and, consequently, subsequent observations
are not independent realizations of the distribution P(s|ρj). However, in the following we assume that observa-
tions are made at sufficient time intervals such that the subsequent observations are not strongly correlated.

We solve the filtering problem by applying a particle filtering method known as sequential importance re-

sampling .17 The distribution of ρj is approximated by N ”particles” ρ
(i)
j and associated weights w

(i)
j . Together

these define a conditional probability distribution for ρj as a sum of weighted Delta distributions:

µN
j = P(ρj |s1:j) :=

∑N
i=1 w

(i)
j δ(ρj − ρ

(i)
j ). (5)

In other words, the particles ρ
(i)
j represent possible realizations of the turbulence profile, with the weights w

(i)
j

indicating their relative probability.

We begin withN particles of equal weight, sampled uniformly from all non-negative vectors whose components
sum to some initial guess of the total turbulence strength. This distribution is then updated at each timestep j
as follows:

1. Draw ρ
(i)
j ∼ µN

j , i = 1, . . . , N , where µN
j is given by (5).

2. Sample new particle locations ρ̂
(i)
j+1 from the evolution model given by (3): ρ̂j+1 = ρj + ηj .

3. Compute w
(i)
j+1 = P(sj+1|ρ̂(i)j+1) according to (4) and normalize through w

(i)
j+1 = w

(i)
j+1/

∑N
i=1 w

(i)
j+1.

4. Define the new distribution as µN
j+1 =

∑N
i=1 w

(i)
j δ

ρ
(i)
j

.

The so-called resampling in step 1 is done to avoid a situation where almost all particles have zero weight, as
this would effectively mean having much fewer particles.

We have found that computing the weights according to (4) in step 3 above can be computationally challeng-
ing, as evaluating the probability distribution involves both multiplying a vector by the inverse of the covariance
matrix and computing its determinant. Since the covariance matrix is of size M ×M , where M is the number of
WFS measurements, the computational cost of these operations quickly becomes prohibitive. For example, two
WFSs with 74×74 subapertures yield a total of 21904 measurements, and evaluating the probability distribution
would take well over ten seconds per particle.

In order to overcome this issue of dimensionality, we split the WFS into 1448 square subregions ranging in size
from a single subaperture to 12×12 and even 37×37 subapertures. The WFS measurements are averaged within
each of these subregions, which then effectively act as larger Shack–Hartmann subapertures. This dimension

reduction allows us to evaluate the probability distribution P(sj+1|ρ̂(i)j+1) in just 25 ms per particle, a reduction
of nearly three orders of magnitude in computation time.

4. SIMULATING PHASE SCREENS WITH BOILING

The simulations were done using MOST, a MATLAB tool for simulating adaptive optics systems, developed by
the AAO team at JKU Linz in Austria. We simulated an AO system with the following properties:

• 37 m telescope with two Shack–Hartmann WFSs, each having 74 × 74 subapertures; the corresponding
LGSs were at an altitude of 90 km, separated by an angle of 2.5 arcminutes

• WFS photon noise level corresponding to a flux of 50 photons per subaperture per frame



• Ten discrete layers of von Kármán turbulence with the outer scale L0 = 25 m

• C2
n-profile evolving in time based on real SCIDAR profiles, with total r0 ranging from 18 cm to 27 cm; this

is explained in more detail below

• Wind speeds for layers ranged from 5.5 m s−1 to 27.5 m s−1, staying constant throughout the simulation

• The atmosphere and AO system were simulated for 10 minutes at a rate of 10 Hz, for a total of 6001 frames

Our aim was to model the temporal evolution of turbulence as realistically as possible. This was achieved
by simulating a time-dependent C2

n-profile based on real turbulence profiles obtained with Stereo-SCIDAR at
Paranal on the night beginning 8th March 2017, shown in Fig. 1. We chose nine consecutive profiles which
exhibited unusually large changes in turbulence strength. These profiles were binned from the original 100 layers
down to 10 by manually selecting altitude bins which corresponded to significant features in the turbulence
profiles. The total turbulence strength in each bin was assigned to a single layer, with the altitude given by
the weighted average of all layers in that bin, rounded to a multiple of 250 m to match existing SCIDAR profile
altitudes.

Based on the binned SCIDAR profiles, we generated a time-dependent 10-layer profile, which is shown as
the reference profile in Fig. 2. This profile was randomly generated to match the binned SCIDAR profiles when
averaged over a corresponding time frame.† Since the temporal resolution of the SCIDAR data is approximately
140 s, the total duration of the generated profile is over 20 minutes. In our simulations we used 10 minutes of
this profile, starting from the beginning of the third SCIDAR profile. This ensures that the temporal evolution
of the simulated profile is fully consistent with the SCIDAR data, as it also takes into account the profiles from
before and after the simulated time frame.

We also concluded that modeling the evolution of turbulence purely based on Taylor’s frozen flow hypoth-
esis18 would be inadequate, as it is only valid on a timescale of a few seconds or less due to effects such as
boiling.19 Motivated by this, we simulated boiling phase screens using an auto-regressive method,20 where a
given percentage of each phase screen is replaced with a new phase screen sharing the same power spectral
density. This causes the phase screens to change slowly while keeping the same statistics.

In Ref. 20, the authors estimated boiling rates using on-sky data from the Gemini Planet Imager, and found
boiling coefficients of 0.991 to 0.996 for a 1000 Hz system; this number indicates how much of the original phase
screen is carried forward by frozen flow in each timestep, with the rest being replaced by a new phase screen
due to boiling. We chose to simulate a boiling coefficient of 0.995, which yields a coefficient of 0.606 for our
10 Hz system. The reason for using a frame rate of only 10 Hz is two-fold. Firstly, it significantly cuts down the
computation time for both simulations and the filter, allowing us to instead simulate over a longer time period.
Secondly, as described in Section 3, using a slower frame rate gives the atmosphere more time to evolve, which
means that each individual frame carries significantly more new information about the atmosphere.

5. RESULTS

In this section we present the results obtained from applying our real-time turbulence profiling method to the
simulated data described in Section 4. The filtering was done using 1000 particles, which were initialized by
sampling uniformly at random from profiles with total turbulence strength corresponding to a Fried parameter
of r0 = 20 cm. It should be noted that the simulated profile had an initial r0 of 21.8 cm, which means that our
initial profiles had 15.5 % higher total C2

n than the simulated profile.

Fig. 2 shows the real-time turbulence strength obtained for each layer, normalized by the turbulence strength
corresponding to an r0 of 20 cm. Since the method described in Section 3 gives us a probability distribution for
the profile, the plots in Fig. 2 include both the mean and the 95 % credible interval of the distribution. The

†The profile was generated by randomly sampling a Gaussian random field with a squared exponential covariance
function. This is also how turbulence is simulated, although the chosen covariance function produces significantly smoother
functions than the von Kármán turbulence model. The sampling was done with a strong prior condition to favor profiles
with averages which closely match the binned SCIDAR profiles in corresponding time frames.



Figure 2. The particle filter was applied to the simulated data described in Section 4. This plot shows the true profile
(red) and the estimate (blue), i.e. the mean of the filtering distribution at each timestep. The credible intervals which
contain 95 % of the probability distribution at each timestep are also shown (light blue). The C2

n-values on the vertical
axis have been scaled by the C2

n corresponding to an r0 of 20 cm to make the relative strength of each layer clearer.

estimate given by the filter may appear significantly noisier for some of the layers, but this is primarily due to the
vertical axis being scaled differently for each layer, as the layer strengths differ by up to an order of magnitude.

We can see from Fig. 2 that the filter follows changes in the simulated profile quite well. There are some
visible errors with layers 4 and 5, although these errors are likely due to the simultaneous rapid drop for layers
6 and 7, especially since the latter are significantly stronger. Apart from this, the only notable errors are at
the start, which is to be expected given the random initialization with over 15 % higher total C2

n than in the
simulated profile.
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Figure 3. Relative error for the results shown in Fig. 2 (blue) and for the corresponding binned SCIDAR profiles. The
error for SCIDAR is shown both using the profile corresponding to each time interval (purple), and using the profile from
the previous time interval (yellow). The former shows the error caused by averaging over a long period of time, and the
latter shows the actual error when using these profiles in an AO system, since the time delay is unavoidable in a real-world
application. The vertical dotted red lines indicate the time intervals where each SCIDAR profile was measured.

In order to quantify the error in the obtained turbulence profiles, we define a relative error metric through

EC2
n
(ρ) =

∑K
k=1 |ρk − ρtruek |∑K

k=1 ρ
true
k

, (6)

where ρtruek is the simulated turbulence strength for the kth layer. Notice that with this particular error metric
our purpose is merely to quantify the difference between profiles. Unfortunately, it is unclear how such an error
metric is connected to tomographic error or AO system performance in general.

Fig. 3 shows the error as a function of time for the profiles shown in Fig. 2. We have also included the
error given by the SCIDAR profiles for comparison. These profiles are constant in each interval indicated by the
vertical dotted red lines, and since they were used to generate the simulated profile as described in Section 4, they
perfectly match the average of the simulated profile in each time interval. We consider the error both when the
SCIDAR profiles are used directly and when we introduce a delay by always using the profile from the previous
time interval. The former is effectively a measure of the error caused by averaging the profile over the time
interval, whereas the latter is the error that might be observed in practice, since the time delay is unavoidable
in a real-time application.

The average error for the profiles given by the filter is 5.7 %. We can clearly see the effect of the random
initialization with a wrong r0, but after 20 to 30 seconds the error level seems to stabilize. Removing the first
thirty seconds where the error is higher, we find that the long-term error level is 5.1 %. By contrast, we found
that the SCIDAR profiles produce an error of 19.4 %, which increases to 46.5 % when we include the time delay.
However, it is important to note that these errors are in no way specific to SCIDAR as a method, the errors arise
purely from the limited temporal resolution which is an unavoidable feature of all commonly used turbulence
profiling methods. Indeed, the fact that the simulated profiles were generated from SCIDAR data eliminates any
possible error from the method itself, since these profiles are effectively treated as the ground truth.

Finally, we also considered the total turbulence strength of the profile, shown in Fig. 4. We found that the
filter achieves an average relative error of just 1.1 %, whereas the error from using the SCIDAR profiles is 6.5 %
without time delay and 25.2 % when the delay is included. We can also see that the total turbulence strength at
the start is indeed 15 % higher than simulated, but it takes only 5 s for the filter to correct this error.
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Figure 4. Total turbulence strength for the results shown in Fig. 2 (blue) and for the corresponding binned SCIDAR
profiles (purple and yellow, as in Fig. 3). Similar to Fig. 2, we have also included a 95 % credible interval (light blue)
around the mean of the filter, indicating the range in which the total turbulence strength falls with 95 % probability.

6. DISCUSSION

We have presented a novel method for real-time tracking of the turbulence profile, and applied it to ten minutes
of simulated data from an ELT-scale telescope. The data was simulated with boiling phase screens using a
time-dependent turbulence profile based on real profiles obtained with Stereo-SCIDAR at Paranal. Using this
data, we have demonstrated that our method is capable of tracking significant changes in the turbulence profile
and the average improvement over SCIDAR is substantial, when the unavoidable time delay in real scenarios is
taken into account. Therefore, our method has the potential to improve tomographic reconstruction or point
spread function estimation in AO systems by providing more accurate C2

n-profiles. The results are also of interest
for developing a clearer understanding of turbulence dynamics on shorter timescales.

Our future work includes expanding the numerical tests on the algorithm. Notice that the SCIDAR profiles
picked for our simulations show larger variations than on average present in the data. Moreover, since no
experimental data indicates how fast the fluctuations can be, the role of our simulated time-dependent profile is
only indicative on what type of dynamics in the C2

n-profile can be tracked. Furthermore, some steps could be
taken to mitigate errors occurring in SCIDAR reconstructions in Section 5, such as using shorter time intervals
for the profiles or, in the time-delayed case, updating the profiles more often. However, the filtering results can
also be improved by using more computational resources, since we used significant dimension reduction on the
data to reduce computational load, as described in Section 4. Finally, we plan to expand our numerical tests to
real data in forthcoming articles.
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