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ABSTRACT

Wavefront tilt correction is extremely important in the adaptive optics systems of large astronomical telescopes,
for tilt makes up most of the aberration induced by atmospheric turbulence. Tilt measurement methods typically
used in adaptive optics systems today involve light from a natural guide star in the vicinity of the object of
interest, or from the object itself. A typical laser guide star does not allow for tilt measurement due to the
double-pass nature of the reference light; the deflection of the upward traveling reference light is unknown.
Polychromatic laser guide stars allow for object-independent tilt measurement by utilizing the dispersion of the
refractive index of air and differential tilt measurements at different wavelengths. Existing research has been
focused on polychromatic sodium laser guide stars (PSLGS), while Rayleigh-Raman polychromatic laser guide
stars (RRPLGS) have seemingly been overlooked. It is shown that RRPLGS have a number of advantages,
including scalability of returned flux and flexibility in selection of short wavelengths, allowing for a combination
of multiple tilt measurements. RRPLGS are applicable to all sizes of telescopes, keeping in mind that for
large telescopes the cone effect is minimized by assuming a tomographic wavefront sensing system. A theoretical
analysis of a specific RRPLGS system is presented to address the feasibility of RRPLGS, focusing on fundamental
constraints.

1. INTRODUCTION

Tilt is a significant portion of the aberrations caused by atmospheric turbulence. Specifically, two-axis tilt
makes up roughly 87% of the phase variance of the aberration induced by Kolmogorov turbulence. Existing tilt
measurement systems require light from a source that traverses the medium in single pass as a tilt measurement
reference, such as a natural guide star or the object itself. Laser guide stars (LGS) create a reference source in
the field of view to enable a wavefront measurement through turbulence. However, typical existing LGS cannot
act as a tilt measurement reference source due to the fundamental problem of the double pass nature of the
reference light. In other words, the deflection of the upward traveling reference light is unknown.

Polychromatic laser guide stars (PLGS) can enable tilt correction that is independent of the object being
viewed and natural guide stars. PLGS rely on atmospheric dispersion and the assumption that the multiple
wavelengths from the guide star come from the same point in space. Existing research on PLGS has focused on
polychromatic sodium LGS (PSLGS), while Rayleigh-Raman polychromatic LGS (RRPLGS) seem to have been
overlooked. This paper investigates the unique benefits of RRPLGS through analytical equations and numerical
simulation.

2. OVERVIEW

From the dispersion of the refractive index of air and the separability of wavelength and atmospheric character-
istics (e.g. temperature, pressure), the general relationship,

θ = ∆θ
(n− 1)

∆n
, (1)

is derived.1 All PLGS use this relationship. In Equation (1), θ is any quantity derived from a linear operation on
the wavefront that the imaging system is sensitive to, ∆θ is the difference between two measurements of θ at two
separate wavelengths, n is the refractive index at the wavelength of observation, and ∆n is the difference between
the refractive index at the same wavelengths as those in ∆θ. The proportionality in Equation (1) assumes that



the light of different wavelengths is reaches a point of observation from paths that are not significantly different
from each other.

From this fundamental relationship, RRPLGS is realized as a technique that can be successfully implemented.
RRPLGS depends on Rayleigh and Raman scattering in the atmosphere from N2 and O2 molecules and therefore
is scalable in the magnitude of the backscattered light. In other words, there is no limit on the laser power. Like
conventional Rayleigh scattering LGS, the laser used needs to be pulsed to permit range gating but otherwise does
not need to be specialized, i.e. does not need to be tuned to a specific wavelength and polarization corresponding
to a specific energy transition. For any single laser, there are various Raman backscattering mechanisms that can
potentially be leveraged to yield multiple tilt measurements at the wavelength of observation. These multiple
tilt measurements from a single laser can be combined for an improved tilt measurement. See Sections 4 and 5
for details regarding combination of measurements and Raman processes.

Furthermore, multiple different wavelength lasers can be used to yield multiple tilt measurements because
Rayleigh and Raman scattering do not require a specific excitation wavelength. Because the returned photon
flux from both Rayleigh and Raman scattering is inversely proportional to the laser wavelength to the fourth
power, there is a range of laser wavelengths that is practical. This continuous wavelength range has a lower
bound due to the absorption of ozone in the near UV and an upper bound due to the magnitude of returned
flux from Raman scattering.

While there are many advantages to RRPLGS, there are a number of disadvantages that seem to have
been the reasoning for the scientific community to focus efforts on PSLGS.1 Just as with conventional Rayleigh
scattering LGS, the RRPLGS will be limited to an altitude of no more than about 30 km.2 Nevertheless, most
turbulence is below 20 km – namely, at ground level and at 10 km.3 Raman scattering cross sections of N2 and
O2 are considerably small, resulting in low return flux relative to the Rayleigh line. Another disadvantage is
that Raman scattering is usually limited in the spectral separation of any two wavelengths used in the returned
spectra (from a single laser) to yield a differential tip-tilt measurement, which is related to limitation in ∆n.
Equation (1) above implies that a large ∆n is desired for an accurate tilt measurement.

3. PRINCIPLES OF OPERATION

For combinations of tilt measurements made with a single laser, the notation is such that λo is the wavelength
of observation, i is the ith measurement of the tilt at λo from a single laser, and w indicates the first or second
wavelength corresponding to this ith measurement and can only equal 1 or 2. This tilt measurement is associated
with the laser number, L, which is always a positive integer and is the Lth measurement of the tilt at λo related
to the use of multiple lasers. For each ith measurement, there is a pair of wavelengths used that must be
clearly identified. Thus, the wavelengths in this pair will be denoted by λL,w,i. This notation is important
for combinations of tilt measurements made with multiple lasers. Note that λL,w,i corresponds to light that is
traveling towards the imaging system. Figure 1 shows an example layout.

From Equation (1) above, it can be stated that

σ2
est,L,i = σ2

diff,L,i

(
n(λo)− 1

n(λL,1,i)− n(λL,2,i)

)2

, (2)

where for the Lth laser, σ2
est,L,i is the variance in the ith measurement of the tilt at the wavelength of observation.

In other words, σest,L,i is the tilt measurement uncertainty in units of radians of wavefront angle. σ2
diff,L,i is

the variance in the ith measurement of the differential tilt. The measured differential tilt is simply the difference
between the measured tilt at λL,1,i and the measured tilt at λL,2,i.

Assuming the two tilt measurements that are differenced are independent relative to each other (as is done
in Schöck et al.4). It follows that

σ2
diff,L,i = σ2

L,1,i + σ2
L,2,i , (3)

where σL,w,i is the uncertainty in the measurement of the tilt using λL,w,i. Note that σL,w,i takes into account
both the temporal and spatial uncertainty.



Figure 1. Example RRPLGS system layout assuming two lasers are used and only two of the returned wavelengths are
used per laser (thus in this case i is always equal to 1), one of which is the Rayleigh line. In this case the two Rayleigh
wavelengths are represented by the solid red (λ1,1,1) and blue (λ2,1,1) lines, and the counterpart dotted red (λ1,2,1) and
blue (λ2,2,1) lines represent Raman wavelengths. The purple line represents the science wavelength, λo. The gray line
is a shorthand for the solid red and blue and dotted red and blue lines. DM stands for deformable mirror, WFS for
wavefront sensor, TTS for tip-tilt sensor, and SC for science camera. Beam splitters are used as an example to separate
the spectrum.

σL,w,i is related to σα(λL,w,i), the angular position measurement uncertainty for a plane tilted wavefront, by
an average of the tilts measured over a number of subapertures (Zernike tip-tilt is the least-mean-square slope
of the wavefront). Thus

σL,1,i =
σα(λL,w,i)√

gL,w,i
, (4)

in which gL,w,i, the number of subapertures in the entrance pupil, is approximated by an object-space area ratio

gL,w,i =
D2
r

d2
L,w,i

, (5)

where Dr is the diameter of the entrance pupil of the receiving telescope and dL,w,i is the subaperture size. Note
that different wavelengths (designated by L, w, and i) can be directed to different wavefront sensors. In the case
of a tip-tilt sensor, a single lens (as opposed to a lenslet array) is used to sense the overall wavefront tip and tilt
across the entire pupil, i.e. sense the global tip and tilt. This can be thought of as a Shack-Hartmann wavefront
sensor (SHWFS) with one “subaperture.” In such a case, dL,w,i is the size of a single lens that has the same
object space size as the entrance pupil diameter, making gL,w,i equal unity.

σα(λL,w,i) for a SHWFS is derived by Hardy3 and is taken in this context as the tip-tilt measurement



uncertainty corresponding to the wavelength λL,w,i,

σα(λL,w,i) =

√
2π

8SNRL,w,i

[(
3λL,w,i

2ro(λL,w,i)

)2

+ ∆α2

]1/2

ro(λL,w,i) < dL,w,i . (6)

In the equation above, ∆α is the object space subtense of the beacon in radians of angle. ∆α is described in more
detail below. ro(λL,w,i) is the Fried length and is a function of wavelength. SNRL,w,i is defined in Equation (7)
and is the signal to noise ratio corresponding to the wth wavelength related to the ith measurement for the Lth

laser. Assuming random perturbations, the tilt in two orthogonal directions is taken into account by multiplying
by
√

2, as shown in Equation (6). If the size of the subaperture in object space is more limiting than the Fried
length, i.e. if dL,w,i is less than ro(λL,w,i), then ro(λL,w,i) in Equation (6) is replaced by dL,w,i. To convert
the units of σα(λL,w,i) from radians of wavefront angle to radians of phase error, Equation (6) is multiplied by
2πd/λL,w,i.

The signal to noise ratio (corresponding to the wavelength λL,w,i) for a unity gain quad-cell detector with
negligible detected background electrons per pixel is given by Hardy3 as

SNRL,w,i =
np(λL,w,i)

(np(λL,w,i) + pse2)
1/2

, (7)

where ps is the number of pixels per subaperture, e is the read noise per pixel in units of electrons rms, and np is
the expected number of photons per measurement per subaperture. The equation for np is also given by Hardy,3

np(λL,w,i) = ML,w,i

[
λL,w,i
hc

σB,L,w,iN(z)L,w,i∆z

4π

TA,L,w,iTA,A
z2

]
EL,w,iTLToAL,w,i . (8)

The transmission factors are given by TA,L,w,i, TA,A, TL, and To, and are the one-way transmission of atmosphere
between the telescope and the beacon corresponding to the wavelength λL,w,i, the one-way transmission of
atmosphere between the telescope and the beacon corresponding to the laser light traveling away from the
imaging system (not necessarily equal to λL,w,i), the transmission of the laser path to the projection aperture,
and the transmission of optical components in the transmit and receive paths, respectively. Notice that if the
wavelength is the same in transmission and reception then TA,A = TA,L,w,i. ML,w,i is the number of laser pulses
received within the integration time corresponding to a tip-tilt or higher-order measurement; note that ML,w,i

is further specified as per tip-tilt measurement (MTT,L,w,i) or per higher-order measurement (MHO,L,w,i). The
distance from the telescope to the center of the range gate is z, in meters. The effective backscatter cross section
in m2 corresponding to the wavelength λL,w,i is given by σB,L,w,i. The atmospheric density of the scattering
molecules as a function of z, the range to the center of the range gate, is given by N(z)L,w,i in units of m-3. EL,w,i
is the laser energy per pulse in Joules corresponding to the wavelength λL,w,i. The area of the receiving aperture
(or subaperture) is AL,w,i, h is the Planck constant, and c is the velocity of light. ∆z is the chosen receiver range
gate length in units of meters. As discussed by Thompson and Gardner,5 the maximum allowable receiver range
gate length is ∆zmax(λL,w,i) and corresponds to the diameter of the laser guide star matched to the natural
stellar width, ∆αstar(λL,w,i). This maximum allowable receiver range gate length is found geometrically to be

∆zmax(λL,w,i) =
2De∆αstar(λL,w,i)z

2

D2
e − (z∆αstar(λL,w,i))

2 , (9)

where

∆αstar =
λL,w,i

ro(λL,w,i)
ro(λL,w,i) < dL,w,i . (10)

Note that De, the diameter of the laser emission telescope aperture, does not have to be the full aperture of
the telescope. In fact, Thompson and Gardner show that De should be chosen to be as small as possible, but
large enough for a reasonably stable LGS centroid.5 Typically a value of approximately 3ro(λL,w,i) is chosen for
De. Rearranging Equation (9), an expression relating an arbitrary range gate length ∆z and the corresponding
angular size of the beacon, ∆α, is

∆α =
De

z∆z

(
−z +

√
z2 + ∆z2

)
. (11)



∆z will ultimately be chosen to minimize the the total wavefront error budget, but for the purposes of this
preliminary analysis it will be chosen based on spot elongation. The elongation angle describing angular extent
of the range gate, i.e. elongated beacon, as seen from a transverse distance of r from the center of the entrance
pupil is given via simple geometry and small angle approximation by

θelong =
r∆z

z2 −
(

∆z
2

)2 . (12)

Letting the approximate LGS FWHM be the average wavelength over the Fried length, the total angular extent
of the spot in the radial direction is approximated by adding in quadrature. Defining θtotal as the seeing limit
multiplied by a fraction Q,

θtotal =

√(
λavg

ro(λavg)

)2

+ θ2
elong = Q

λavg
ro(λavg)

. (13)

Notice that Q must be greater than 1. Approximating ∆z as small such that the denominator in Equation (12)
is simplified, the approximate ∆z corresponding to a value for Q is

∆z =
λavgz

2

ro(λavg)r

√
Q2 − 1 . (14)

As for the choice of ML,w,i, the system is limited by τc,L,w,i, the coherence time (for wavelength λL,w,i). However,
τc,L,w,i is a summary statistic that describes the change in the entire wavefront, not a particular mode (e.g. tilt),
so it is very conservative for changes in tilt, for tilt is more slowly varying. Tyler has investigated the fundamental
tracking frequency for the Zernike tip and tilt and shown that this correction frequency is approximately one
ninth of the Greenwood frequency,6 i.e.

fz,L,w,i =
1

9
fG,L,w,i =

1

9

0.134

τc,L,w,i
=

1

9

0.134v

0.314ro(λL,w,i)
. (15)

v is the wind velocity at the altitude of correction. The number of laser pulses per tip-tilt measurement is then
given by fZ,L,w,i divided by the laser pulse repetition rate, fp,L,

MTT,L,w,i =
fp,L

fZ,L,w,i
. (16)

Likewise, the number of laser pulses per higher-order measurement is given by

MHO,L,w,i =
fp,L

fG,L,w,i
. (17)

Equations (2)-(8) and (11) are used to form an expression for σ2
est,L,i. In the shot noise limit, i.e. when

SNRL,w,i is simplified to be
√
np(λL,w,i), this expression is

σ2
est,L,i =

(√
2π

8

)2

(YL,1,i + YL,2,i)

(
n(λo)− 1

n(λL,1,i)− n(λL,2,i)

)2

, (18)

where

YL,w,i =

4πhcz2

[(
3λL,w,i

2ro(λL,w,i)

)2

+
(
De

z∆z (−z +
√
z2 + ∆z2)

)2]
gL,w,iML,w,iλL,w,iσB,L,w,iN(z)L,w,i∆zTA,L,w,iTA,AEL,w,iTLToAL,w,i

. (19)



4. COMBINATIONS OF MEASUREMENTS

The optimal combination of the various tip-tilt measurements at the wavelength of observation is of particular
interest. This can yield a reduced variance in the final measurement. It is required that each different wavelength
laser results in two or more wavelengths returning towards the imaging system. One way to improve the accuracy
of the tip-tilt measurement at the wavelength of observation is to combine the measurements arising from all pairs
of wavelengths in the spectrum of the returned light. This makes the most out of each laser. Additionally, with
many different wavelength lasers, the tip-tilt measurement at the wavelength of observation from each different
wavelength laser can be combined. In other words, the combinations possible are twofold; there are combinations
related to the use of one laser, and there are combinations related to the use of multiple lasers. Note that in
calculating any single tip-tilt estimate at the wavelength of observation, the pair of wavelengths used must come
from the result of one laser. This is because the wavelength pairs used for a differential tilt measurement must
be known to have come from the same point in space. The returned light from a laser of one wavelength and
the returned light from a laser of another wavelength are not known to have come from the same point in space
because the deflection of the reference light traveling towards the object of observation is unknown.

4.1 Combinations Related to Multiple Lasers

The combinations related to the use of multiple lasers are discussed first. Once a tip-tilt measurement at the
wavelength of observation is found from a single laser, whether it be from a single pair of wavelengths or a
combination of pairs of wavelengths from the returned light spectrum, this result can be combined with that
of additional lasers of different wavelength via a weighted average. Each measurement is optimally weighted by
the reciprocal square of the associated uncertainty via maximum likelihood. The tip-tilt measurement at the
wavelength of observation for each different wavelength laser is identified by laser number L (the maximum value
of L is Lmax, the number of different wavelength lasers used), and has an uncertainty of σbest,Las,L. The best
estimate for the mean of the true tilt is given by

θbest,final =

∑Lmax

L=1
θbest,Las,L

σ2
best,Las,L∑Lmax

L=1
1

σ2
best,Las,L

. (20)

θbest,Las,L is defined in Equation (22). Assuming that the tip-tilt measurements of the wavelength of observation
from different lasers are uncorrelated, σbest,final, the uncertainty in the weighted average of the tilt measurements
from different lasers, can be calculated via error propagation,

σbest,final =

(
Lmax∑
L=1

1

σ2
best,Las,L

)−1/2

. (21)

Note that if only one measurement of the tilt at the wavelength of observation is found per laser (i.e. the maximum
value of i is unity), then σ2

best,Las,L simply equals σ2
est,L,1. As for the combinations related to the use of one laser,

one cannot safely assume that the tip-tilt measurements at the wavelength of observation are uncorrelated. The
following relates σ2

est,L,i to σ2
best,Las,L for multiple single-laser measurements of the tilt (the maximum value of

i is greater than 1) at the wavelength of observation.

4.2 Combinations Related to a Single Laser

In the context of combinations related to the use of one laser (L is fixed), let θest,L,i be the ith measurement of

the tilt at the wavelength of observation (using the Lth laser) with measurement uncertainty σest,L,i. ~θest is a
real and random vector of various θest,L,i and has dimensions q x 1. Let q be the number of pairs of returned

wavelengths from a single laser (the maximum value of i is q). Assuming that ~θest is normally distributed, i.e.

the probability density function of ~θest given the mean θ is a q-dimensional normal of mean θ and covariance
matrix Kθ, the method of maximum likelihood yields that when using only one laser, the best estimate of the
mean of the true tilt is given by

θbest,Las,L =
~θ TestK

−1
θ
~ξ

~ξ TK−1
θ
~ξ
, (22)



where ~ξ is a q x 1 column vector of ones. It is easy to show that given the general form ~y = B~x, the covariance
matrix of ~y, Ky, is related to that of ~x by is Ky = BKxB

T . Likewise ~y = βB~x, yields Ky = β2BKxB
T , where β

is a scalar. This can further be extended by stating a general form y = β~ξ TB~x, which yields that the variance of
y is σ2

y = β2~ξ TBKxB
T ~ξ. Applying this general form to Equation (22) and noting that covariance matrices are

Hermitian, i.e. ~θ TestK
−1
θ
~ξ = ~ξ TK−1

θ
~θest for this real case, yields that when using only one laser the uncertainty

of the best estimate of the mean of the true tilt is given by

σbest,Las,L =
(
~ξ TK−1

θ
~ξ
)−1/2

. (23)

Note that if the elements of ~θest are not correlated, Equation (23) matches the form of Equation (21) and
Equation (22) is reduced to an optimally weighted average akin to Equation (20).

5. RAMAN SCATTERING PROCESSES OF INTEREST

Combinations related to the use of multiple lasers can be realized simply considering one Raman process, but
the combinations related to the use of one laser are made possible by taking into account multiple Raman
scattering processes. Rayleigh scattering (elastic) off air molecules provides the largest signal, which can be used
for high-order wavefront sensing. Raman scattering (inelastic) results in weaker signals that are Raman shifted
to wavelengths that differ from the laser wavelength. At altitudes less than 100 km, the composition of air is
approximately 76% N2 and 21% O2.

The Raman scattering processes of interest to investigate include vibrational (Stokes and Anti-Stokes), rota-
tional, stimulated, and cascaded. Vibrational Q-branch transitions result in a shift in wavelength characterized
by the Raman shift (2331 cm-1 for N2 and 1555 cm-1 for O2), and the cross section as a function of wavelength
is given by Bischel and Black.7 A Raman shift that results in a longer wavelength (Stokes) is more common and
thus has more flux than a Raman shift that results in a shorter wavelength (Anti-Stokes). The spectra associated
with rotational Raman scattering is observed surrounding the Rayleigh line and the vibrational Raman lines.
Rotational Raman shifts range from approximately 5 cm-1 to 200 cm-1 from the central line8 and have lower
flux than vibrational Raman scattering. The rotational Raman cross section as a function of wavelength for
N2 and O2 are given by Penney et al.9 Stimulated Raman scattering uses two (in this case, co-linear in space)
lasers with the same polarization that have a difference in wavelength equal to a wavelength corresponding to a
Raman transition (with a characteristic Raman shift) of the molecule. It is the difference in wavelength between
the two lasers that matters in this case. Stimulated Raman scattering results in Raman scattered light that is
several orders of magnitude brighter than typical (spontaneous) Raman scattering. Cascaded Raman scattering
occurs with high laser pulse energy and results in multiple orders of Raman scattering, i.e. a larger separation
of wavelength from the Rayleigh line. This is of particular interest in RRPLGS because a high laser power is
possible with RRPLGS and a large ∆n is beneficial (see Equations (1) and (2)).

6. SIMULATION

Using the equations above, a specific system model is simulated with the parameters in Table 1. For this
preliminary simulation, only Rayleigh scattering and Stokes vibrational Q-branch Raman scattering from N2 is
taken into account. In other words, only one measurement of the tilt at λo is found per laser, and combinations
related to the use of one laser are not included. Note that data from Chapter 7 of the Handbook of Geophysics and
Space Environments10 is used for atmospheric transmission as a function of wavelength (TA,A and TA,L,w,i) with
observation angle at zenith. Pressure and temperature values used for Rayleigh cross section and atmospheric
density of N2 as a function of altitude have been sourced from Allen.11

To compare the SNR between various spectral lines, the SNR taking into account the entire collecting area
(called the tilt SNR) is plotted against the returned wavelength spectrum in Figure 2. In the shot noise limit,
the SNR taking into account the entire collecting area is given by SNRL,w,i multiplied by

√
gL,w,i, since np is

multiplied by gL,w,i to take into account the entire collecting area. Notice that the 361 nm returned wavelength
is sent to the SHWFS for higher-order mode correction, and because MHO,L,w,i < MTT,L,w,i the SNR is lower.



Table 1. Key input parameters of specific system model simulation.

System Parameter Symbol Units Value

Wavelength of Observation λo nm 1500

Object Space Tip-Tilt Aperture Size and Telescope Diameter Dr m 3

Rayleigh Wavelength Corresponding to Laser 1 (Nd:YLF) λ1,1,1 nm 349

Rayleigh Wavelength Corresponding to Laser 2 (Nd:YAG) λ2,1,1 nm 355

Rayleigh Wavelength Corresponding to Laser 3 (Nd:YAIO) λ3,1,1 nm 361

Laser Energy Per Pulse (For All Lasers) E mJ 40

Laser Pulse Repetition Rate fp kHz 5

Number of Pulses Captured Per Tip-Tilt Measurement MTT,L,w,i pulses 300

Number of Pulses Captured Per Higher-Order Measurement MHO,L,w,i pulses 33

Range to Center of Range Gate z km 12

Range Gate Length ∆z km 0.6

Laser Emission Telescope Diameter De cm 30

Fried Length at 500 nm ro(500 nm) cm 15

Figure 2. 2-axis tilt SNR as a function of returned wavelength. The Rayleigh wavelengths are represented by the
solid lines while the counterpart dotted lines correspond Raman lines. The lines of the same color represent a pair of
wavelengths used to measure the tilt at the wavelength of observation.

As expected, due to the small Raman cross section, the SNR of Raman lines is relatively low compared to the
Rayleigh. The high laser power results in high SNR values.

To compare the effectiveness of each laser in reducing the uncertainty in the weighted average (see Equa-
tion (21)), σbest,Las,L for L = 1, 2, and 3 are compared in Table 2. The uncertainties are extremely similar.
This is due to the impact of gL,w,i in Equation (4) and the refractive index term in Equation (2) increasing with
longer laser wavelength due to the Raman shift (2331 cm-1). Applying Equation (21), the resulting uncertainty
in the weighted average, σbest,final, is 0.12 arcsec of wavefront angle. For reference, the diffraction limit λo/Dr

is 0.10 arcsec of wavefront angle.

Keeping all system parameters the same but now using only one laser, the tilt measurement uncertainty
corresponding to one laser can be analyzed as a function of wavelength and laser power. Note that for this single



Table 2. Comparison of the tilt measurement uncertainty (in units of arcseconds of wavefront angle) as function of laser
wavelength. The resulting uncertainty in the weighted average is 0.12 arcsec of wavefront angle.

Laser Wavelength [nm] Two-Axis Tilt Measurement Uncertainty [Arcsec]

349 0.201

355 0.204

361 0.207

laser case, high-order mode correction is included by directing the Rayleigh line to a SHWFS.

Figure 3. Left: For E of 40 mJ, σbest,Las,1 = σbest,final as a function of λ1,1,1. Right: Using only the 349 nm laser (i.e.
λ1,1,1 = 349 nm), σbest,Las,1 = σbest,final as function of E. Note that fp = 5 kHz here.

The left plot in Figure 3 shows that taking into account the transmission of atmosphere10 and Raman cross
section7 both as a function of wavelength, a shorter wavelength (the minimum being 349 nm in the plot) results
in less uncertainty in the tilt measurement. The right plot in Figure 3 shows that even though saturation is not
an issue in RRPLGS, shot noise limits the effectiveness of increasing laser power. Clearly, strategies other than
maximizing the laser power are necessary to demonstrate the full potential of RRPLGS.

7. CONCLUSIONS AND ACKNOWLEDGEMENTS

Preliminary analysis and simulations have shown that RRPLGS is an approach worth investigating for object-
independent tilt correction. Futhermore, as laser technology improves, RRPLGS will become more promising.
One can imagine the concept of RRPLGS being applied with a high power next-generation supercontinuum laser
yielding many combinations of two-axis tilt measurements for an improved measurement. A simulation using
three lasers and only one Raman process has shown a combined two-axis tilt measurement uncertainty that is
1.2 times the diffraction limit.

RRPLGS allows for tip-tilt correction that is independent of natural guide stars and light from the object
itself. Thus the applications of RRPLGS are wide-ranging. Even if only a partial correction is achieved, there
are suitable applications such as wide-field ground-layer adaptive optics systems.

Future work includes using multiple returned wavelengths from various Raman scattering mechanisms to
simulate a combination of tilt measurements in the context of a single laser. Adding to this the combination of
measurements in the context of multiple lasers, the potential of RRPLGS can be further demonstrated. Also
of interest is a more comprehensive system model, as well as building an RRPLGS prototype to acquire on-sky
data and verify simulations.

The authors acknowledge and thank Matthew Kupinski for statistics guidance and Khanh Kieu for Raman
scattering guidance, both of whom are faculty of the University of Arizona College of Optical Sciences.
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