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ABSTRACT

The pyramid wavefront sensor (PWFS), due to its extremely high sensitivity in comparison to the Shack-
Hartmann WFS, is the design choice of most single-conjugate adaptive optics (AO) instruments currently being
developed for extremely large telescopes (ELTSs). This sensitivity benefit is served, however, with several technical
drawbacks to overcome, one of which is the intrinsic non-linearity of the sensor. Even in modulated operation,
the gradient measurement saturation non-linearity is strongly exacerbated by in-loop phase residuals for typical
on-sky regimes, with high spatial frequencies inducing a dramatic sensitivity reduction for the controlled modes.
This phenomenon has been dubbed “optical gain”, and it was demonstrated that a modal gain compensation
on an appropriate control basis provides an adequate mitigation of the sensitivity reduction, and improves the
end-to-end performance on ELT SCAO systems across all relevant guide star magnitudes and seeing conditions.

Several techniques have been proposed to achieve this nominal performance recovery, however most require
offline computation of interaction matrices; or some alterations to the usual AO loop operation. In this paper, we
present the CLOSE (Correlation-Locked Optimization StratEgy) algorithm, which achieves determination of the
modal gains, in a real-time fashion, through the sole use of the modal decomposition of the WFS measurements.
Real-time estimators are implemented to implicitly measure resonance levels of the integrator transfer function,
which is used as a proxy to control the modal gains through a second-layer servo loop. Using this method, we
achieve compensation of the optical gain in the command law, and a fully automatic optimization of the modal
integrator depending on the signal-to-noise level. Simulated end-to-end results are presented, for stationary or
quickly varying seeing conditions, all at the scale of the MICADO SCAO design on the ELT. We also discuss
the applicability of the CLOSE scheme on other known AO problems.
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1. INTRODUCTION

Probing the distant universe with always finer resolution and precision requires to increase the diameter of
the next generation of ground-based telescopes' ™ so as to improve light collection and resolving power. The
latter is limited by atmospheric turbulence, making extremely large telescopes (ELTS) a waste if not for the use
of adaptive optics (AO). The pyramid WFS* (PWFS) in particular is the preferred sensor for ELTs, a choice
motivated by its increased sensitivity at low flux regimes, and also by technical advantages such as the reduced
number of required pixels. Unfortunately, the PWFS also comes with a list of technical and theoretical difficulties
and challenges; one such drawback is the variation of the sensor sensitivity with wavefront conditions,> % called
optical gain; sensitivity depends upon the magnitude and structure of the residual phase measured, and is thus
influenced by the seeing, the wind speed or any other parameter that has an impact on the loop residuals.

Moreover, this optical gain intertwines with the integrator loop gain, i.e. the value used by the AO real-time
computer (RTC) to scale the sensor feedback. Indeed, most AO systems use an integral controller, as such a law
is conceptually simple and uses moderate computing power. Tuning the loop gain is a way to increase the loop
performance, as gain impacts in opposite ways the temporal error and the noise propagation. A fine-tuned modal
integrator thus makes it possible to optimally balance those error terms towards residual variance minimization.”
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Previously existing approaches”™® are made complex by the sensitivity variation of the PWFS: the optical and
loop gains multiply and bias the outcome: the sensitivity must be known to optimize the integrator.

We started to tackle this problem in the context of the SCAO module of the MICADO? instrument, a first-
light, near-infrared imaging camera for the European ELT. The built-in SCAO'? uses a PWFS working at optical
wavelengths. We previously presented a method for estimating on-sky the optical gain,'' and demonstrated that
a modal compensation'? applied on a well-suited basis allows for significant performance improvements, in
particular for poor seeing conditions. Yet, we did not address the optimization of the integrator against the
signal-to-noise ratio (SNR) and speed of turbulence, which is what we now propose in the present paper.

CLOSE (Correlation-Locking Optimization StratEgy) is a self-regulating method that permanently maintains
the equilibrium between small temporal residuals and a reasonable noise amplification, while coping with an
arbitrary hidden, variable WFS sensitivity, such as PWFS optical gain. Without assumptions, CLOSE applies
beyond the sole case of the PWFS: it also naturally applies to any other AO system, whether the sensor gain
varies or not (Shack-Hartmann systems, using or not quad-cells, elongated laser guide stars, etc). CLOSE —
originally inspired by a proposition (Montera et al.'®) to apply single-layer neural networks to AO RTCs- is a
second-level servo-loop, which drives modal gains through real-time multiplicative updates computed from the
temporal correlations of the modal decomposition of WFS measurements. The steady-state condition reached
for this top-level loop closely matches the variance optimization criterion for the residuals, regardless of the
currently-ongoing optical gain alteration of the WF'S response. Altogether, CLOSE is a fully automatic, without
intrusive signals, real-time pipeline optimizing integrator-based AOs with unknown sensitivity variations.

In section 2, we introduce our model of the PWFS and describe our dealing with nonlinearity. Section 3
explains how CLOSE operates, and section 4 will describe its possible implementations. Finally, section 5 shows
some simulation results for the MICADO SCAO for stationary and varying seeing conditions, and discusses
CLOSE capabilities beyond the originally envisioned PWFS modal gain compensation.

2. A QUASI-LINEAR MODEL OF THE NONLINEAR PWFS

We show on fig. 1 the schematic of the SCAO that is considered throughout this paper. The various wavefronts
¢e represented on fig. 1 are meant as their vectorized decomposition on the control basis of the deformable
mirror (DM): (1, ..., o), plus some additional component orthogonal to the DM space. The wavefront sensor is
represented by its modal interaction matrix dPyr, which is the differential of the WFS response, i.e. computed
using infinitesimal push-pulls around a flat wavefront. We introduce before this interaction matrix a square,
modal confusion matrix M, which is a random variable dependent on the residual wavefront ¢res shown to the
PWEFS. This random matrix M is the mathematical representation we choose of the optical gain effect.

The confusion matrix M has some reasonable properties when described on an appropriate modal basis,
which are the foundation of optical gain modal compensation for the PWFS.% 12 In previous work,!! 1415 we
performed a thorough numerical assessment of the fluctuations of M when the power spectrum density (PSD)
of ¢Rres is stationary, and validated the key properties described thereafter; these analyses were performed using
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Figure 1. General modelization of the AO loop with the WFS, RTC and DM, in the nonlinear confusion matrix model
presented. The confusion matrix M (slowly) depends on the structure of the residual ¢res.



a Karhunen-Loéve (KL) basis orthonormalized on the DM,'6 built with modes ¢; containing a mix of spatial
frequencies of a single given norm, and ordered by spatial frequency. The last few hundred modes (at the ELT
scale) contain a variety of waffles, until the cutoff is reached. We use this basis for all purposes in this paper.

We have demonstrated that: (1) M is essentially diagonal for low-order modes, which bear most of the power
of the atmospheric turbulence; (2) that the diagonal coefficients vary by no more than a few percent for a given set
of wavefronts ¢res of identical PSD, a property in accordance with theoretical derivations through convolutional
PWFS descriptions;'"-!® and (3) that the off-diagonal portion of M, while non-negligible for high-order ¢;, is of
a negligible average value across wavefronts of identical PSD.

These properties enable the modal gain compensation strategy. It is shown in the “Reconstruction” block of
fig. 1: first, a modal space description is obtained through the reference command matrix Rec = dPer; then, an
array of multipliers G; 1<i<n is applied to modal commands, with such multipliers ideally selected to encompass
(1) compensation of the M nonlinear effect for ongoing turbulent conditions and (2) the gain factor such that
the modal integrators show appropriate transfer functions and ideal rejection levels. The stability property of
M against the spectrum of ¢res ensures that G; values can be kept constant as long as the descriptive statistical
parameters (ro, Lo, C2(h), ...) of the turbulence remain constant.

While we have well assessed that M is not, in general, a diagonal matrix, its average for a given ¢res PSD is,
and it remains quite interesting for design purposes to pursue this hypothesis in the general case. Assuming the
diagonality, fig. 1 can then be simplified to the flowchart shown on fig. 2, which applies as one of N decoupled
servo-loops for each of the controlled modes. The reference interaction and command matrices dPyr and Rec
simplify to give scalar, decoupled diagrams, with M reduced to its i—th diagonal coefficient «;. As «; is always
smaller than 1, it has often been called modal sensitivity reduction.

Under the diagonal hypothesis leading up to fig. 2, we can also factor in that «; varies only with the statistical
properties of the turbulence, and hence changes slowly relative to the rate the AO loop is executed at. Considering
timescales over which all «; are static, it follows that we simplified the problem of the nonlinear PWFS to N
superimposed linear modal servo-loops, although each with an unknown sensitivity parameter. The performances
of these loops are entirely defined by a small number of parameters: the temporal spectra of the turbulence and
noise for the i-th mode, and the «; and G; scalars. The temporal spectrum for a single mode is well described
in the literature!®2° for Kolmogorov or Von-Karméan turbulence; we shall assume that the noise is white. The
temporal dynamics of the loop are described by the sole “true gain” «;G;, which effectively defines what the closed-
loop transfer function will be. However, except for in-situ calibrations used by other optical gain compensation
methods,':1%21 this overall loop gain is in general unknown to the operator and/or the RTC.
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Figure 2. Reduction of the PWFS AO loop model (fig. 1) to a single mode. The matrix M is reduced to its i-th diagonal
term «;; residual off-diagonal terms are to be included in the modal noise b;.
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Figure 3. Typical temporal spectra |h;(v)|? of the residual closed-loop modal measurements for a high SNR case, for
several values of the true gain a;G;. Here the latency is 1.0 frame, vs = 500 Hz, giving gcrit = 1.0 and verit=83.3 Hz.

3. THE CLOSE SOLUTION TO MODAL GAIN

The diagram shown on fig. 2 introduces the principle of the CLOSE servo-loop; its objective is to provide a
unified technique to optimize the rejection, defined by the hidden value «;G;, based on the modal SNR, and
operating only on the known modal multiplier G;. It is introduced as a second-layer supervisory loop, which
takes as inputs the modal decomposition of the PWFS measurements. From there, a frame-by-frame estimation
of modal temporal autocorrelation (AC) is performed, and an update of the modal gain G; is computed and
applied at every time step based on these estimates. With all the priors on the temporal spectra of the modal
components of the turbulence and noise, estimating the normalized AC for a single temporal shift enables the
estimation of the actual loop gain «;G;, and through this to automatically drive the value of G; so that the
transfer function given by «;G; is ideal for the control of the AO.

For each mode, the loop described in section 2 is a classical feedback loop with a delayed integrator of
gain a;G;. The rejection of such loops are a high-pass transfer function, and they become unstable when the
gain reaches a value geit, which only depends on the loop latency (expressed in frame units). As the loop
gain increases towards g.it, the closed loop transfer function exhibits a typical resonance peak, with a central
frequency converging towards a value vt defined only by the system latency (expressed in frame units) as well.
An example of modal measurements power spectra |1i;()|?, where v is the temporal frequency and e denotes
a temporal Fourier transform, is shown on fig. 3. The left “peak” on fig. 3 is the remainder of the turbulence
spectrum cutoff after application of the high-pass rejection transfer function. The right peak (converging to verit
— 83.3 Hz in this example with a sampling frequency vg of 500 Hz ) is the result of the amplification of the noise
floor as the AO loop, with an effective gain «;G; closing on g, exhibits as strong resonant effect. The latency
considered in the example shown on fig. 3 is 1.0 frame, resulting in gy = 1; in this paper, we define latency
values as not including WFS integration and DM zero-order hold effects. Values of v..;; and gerit with latency
are summarized in table 1.

Table 1. Parameters related to transfer function divergence of the AO loop depending on the latency of the system.

Latency Verit Gerit At
(frames) (frames)
0 vs /2 20 1
1 vs /6 1.0 3
2 vs /10 =~ 0.618 5

The rationale of CLOSE is to leverage this typical structure of the modal measurement spectrum to implement
a servo-loop supervising «;G;. The amplitude of the resonant peak is used as a monotonically varying indicator
to provide control on the value of the true gain o;G;. The AO modal gain G; is then adjusted to converge on the



desired a;G; value. In order to estimate the amplitude of the resonant peak, CLOSE uses the anti-correlation of
the measurements for a time-shift At that is half the period corresponding to v..;. Values for At are also given
in table 1. With m}[A¢t] being the AC of the time series of modal measurements m;[k] for a time-shift of At
frames, the normalized
> milklmalk + At]
mi[At] 7 (1)
m;[0] STk

k

is a monotonic proxy for the true gain a;G;. From there, one can act on G; in order to lock the correlation value

onto a steady-state solution verifying
mi[At]
—— =re[-1,1], 2
g = el 2)

(2

where r is the smartly chosen, supervisory loop setpoint. The value of r shall be adjusted (or defined per-mode)
as to fit a performance-maximizing criterion in all useful situations the AO would face, and across the complete
range of the effective modal SNR. A higher value for r will work towards a more cautious and robust solution with
a lower loop gain. A smaller value will lead to more aggressive loop behavior, possibly reaching nearly-divergent
transfer functions, but with a maximized rejection of the low frequency components.

With the condition of eq. 2 reached, CLOSE enforces a transfer function constraint that is independent of
the sensitivity reduction of the WF'S. Therefore, it provides a go-around strategy regarding the impossibility to
apply to the PWFS (or other systems compatible with the description discussed in section 2) some methods”®
based on numerical estimations of transfer functions that are restricted to linear systems without unknowns.

3.1 Choosing the r setpoint

In order to assess what values of r shall be chosen, we performed semi-analytical computations of the steady-
state solution of CLOSE, and compared to the optimal solution for modal integrators minimizing the residual
variance of Gendron & Léna (1994).” As we use near-KL modes, the variance minimization is similarly obtained
by optimizing each of the N modal loops separately.

These computations showed that for latencies of 0, 1 and 2 frames, and across 10 orders of magnitude of the
range of modal SNR (i.e. for any mode and any SNR), the CLOSE steady-state solution never diverges from
the optimal one by more than 20%, when keeping a constant setpoint value of r = 0. Certainly a smart fine
tuning of the value of r could lead to some slight, marginal improvement of the performance. But we claim that
choosing r = 0 is so close to the optimum over such a huge range of situations that it can be set as the baseline
value with confidence. The retained value is not critical for the performance, provided it is not too close to -1
or +1. As said before, playing with values in r € [—0.2,0.2] makes it possible to explore different compromises
of performance versus robustness. These results show that CLOSE can, on top of making the loop independent
from arbitrary hidden modal factors, enforce a near-optimization of the modal integrator with a very simple
control law.

4. PRACTICAL IMPLEMENTATION

Having studied the steady-state solutions of the CLOSE servo-loop, we now propose our real-time implementation
to achieve convergence to such states. From the time series m;[k] of modal measurements, two AC estimators
are built using discrete integrators:

p mi[k]* + (1= p) N[k — 1]
NPK] = p milk]mg [k — At + (1 = p) NP [k — 1], (3)
where k is the time step index, and p € [0,1] a smoothing parameter. N? and NiAt contain time-windowed

estimates of m}[0] and m}[At]; after an empirical optimization of the parameter p, we opted for fast integrators
with p = 0.3 for all simulations presented in section 5.



After the AC estimation, the GG; are updated using multiplicative increments as follows:

Gilk] = Gi[k — 1] x [1 +q¢F (Jﬁf[g] - r)] . (4)

The r parameter is the same loop setpoint as defined in section 3. While the theoretical derivations were most
accurate using r = 0, it is to be noted that for numerical simulations we maximized the long exposure Strehl
ratio (SR) empirically, which in the end lead us to always using r = —0.1.

The ¢* learning factor encompasses two different values, with either ¢t and ¢~ used depending on the sign
of NAU[k]/NP[k] — . This asymmetry is introduced as to make the algorithm more reactive to overshooting
transients (with ¢~), as compared to tracking gain increases due to a transfer function deemed too slow (using
q"). As such we will be using ¢~ = 5¢; the numerical values of ¢* used in the numerical simulations in section. 5
are ¢t =1072 and ¢~ = 5.1072.

These g% learning factors are the determining parameter of the time constants associated with the convergence
and tracking ability of the CLOSE loop. Simulations here use what is near the maximum acceptable value to
limit computation time while maintaining AO stability. We however infer that for a real AO system, q© values
in the range of 1073 — 10~* should be used assuming 500 Hz frequency, hence providing typical time constants in
the 2— 20 seconds range. The ideal choice of ¢& will probably remain dependent on the system, and will probably
require some adjustments accounting for robustness and responsiveness to variations of turbulence conditions or
other transient events.

4.1 Expected additional strain on the RTC

Implementing CLOSE in a real-time fashion is of course expected to add some additional RTC strain. While the
AC estimations and gain updates themselves (eqs. 3 and 4) are negligible compared to the required matrix-vector
multiplication (MVM), having the m;[k] available in real-time requires to do the reconstruction in two successive
MVM steps. The first MVM converts WFS measurements to modal values, with a computational burden nearly
identical to the usual measurements-to-DM-commands MVM. The second step computes DM increments from
modal values, with a nearly square matrix of size the number of actuators.

For a typical PWFS AO system, the number of pixels read out is typically 5 to 6 times the number of actuators.
If performing the measurement in a slopes-maps fashion, the RTC strain increase is of about 33 - 40%; if using
a full-pixel measurement technique, it is an additional 16 - 20% increase only.

4.2 Block-wise, zero-strain alternative

If the RTC software cannot be altered on an existing system, or if the additional strain is not acceptable within
the RTC specifications, CLOSE can be implemented in a block-wise flavor. In such case, all estimators, gain
updates, and command matrix updates are performed in offline time, certainly in another process and preferably
on another machine. This buffered strategy enables to deploy CLOSE on nearly any existing AO system.

A time-continuous buffer of K WFS measurements is forwarded to the CLOSE process, which turns them into
modal measurements m;[0]...m;[K — 1] using the modal reconstructor Rec. For each mode, the AC estimators
of eq. 3 are replaced by the direct computation of the normalized At-shifted AC term over the telemetry buffer:

| KA
- , , A
. AL 2 mg[k]lm; [k + At
ock __ =

Ni - 1 K—1 (5)

k=0

The gain update equation can then be performed:

Gi|new] = G;[old] x [1 + ¢t (N}’IOCk - T)] , (6)



using ¢t factors adjusted for the longer integration time and the increased SNR on AC estimation; typically ¢*
ought to be larger by a factor VK for a dynamical effect comparable to the real-time implementation. The new
command matrix can then be computed accounting for the new G; values, and when all side-tracked computations
are finished, can be set into the RTC.

5. NUMERICAL SIMULATION RESULTS

This section covers some end-to-end numerical simulations demonstrating the performance achieved with CLOSE
when applied to the MICADO SCAO design'?:?? (see table 2). All simulations were performed using the COM-
PASS?3 platform. In the following sections, we present studies on the convergence of modal gains when boot-
strapping the AO loop, and the end-to-end performance for stationary and varying seeing conditions. In addition,
videos showing the dynamical behavior of some CLOSE simulations are available online.2

5.1 Gain convergence at loop closing

We can take a first look at the behavior of CLOSE when the AO loop is closed. Without any priors given, we
choose an initialization condition G;[0] = 0.5. With the 2 frames of latency considered, the critical gain value
iS gerit =~ 0.61; given that the sensitivity reduction «; is always smaller than 1, this ensures that the loop is
initially closed with stable transfer functions. From these initial 0.5 values, the G; are driven by CLOSE to their
steady-state values, which account both for non-linearity compensation and the temporal variance minimization.

We show on fig. 4 the values of the 4309 modal gains G;, averaged on certain subsets of frames within the
first two seconds after the AO loop is closed. These simulations are performed for four different cases, with rq
of 14.5 and 9.0 cm, and guide stars of brightnesses Mr = 0 and My = 16. For the bright cases, steady state is
reached by frame k ~ 500, i.e. within one second. The process is slightly slower for the Mr = 16 cases, with a
continued convergence of the G; between frames k = 500 and k& = 1000.

Simulations at Mz = 0 are essentially performed with an infinite SNR. As such, the loop true gain which
minimizes the output variance is close to the maximum stability value g, and the G; coefficients reached in
steady-state are essentially reflecting the inverse o ! of the PWFS sensitivity reduction. These curves reached
after k = 1000 frames in My = 0 cases are compliant with the abacuses we presented in previous work, ™14 with
«; decreasing up to mode 30, which contains spatial frequencies corresponding to the modulation radius, then
increasing again roughly as a power law up to the highest order modes.

Table 2. AO parameters used for end-to-end numerical simulations

Simulation parameters

Telescope D =39 m Turbulence von Karman - single ground layer
ELT pupil model ro(500 nm) from 7.0 to 22.0 cm
Spiders are omitted Lo=25m, ||V|| =10 m.s™
Guide star On-axis natural star PWFS 92 x 92 subapertures (42 cm pitch)
zero point 2.6 x 10'° ph.s~t.m2 24080 pixel values read-out
DMs Tip-tilt “Full pixels” measurement space?® 27
ELT M4 model Monochromatic at 658 nm
pitch 54 c¢m, coupling 0.24 0.28 throughput (quantum efficiency inc.)
4310 actuators driven Circular modulation, ryjoq = 4%
RTC Frequency 500 Hz Read-out noise 0.3 e~
Latency 2 frames CLOSE Real-time implementation
(exposure/hold excluded) p=0.3
Controlled on KL basis'® gt =102, ¢~ =5.1072
Modal integrator with double MVM: r=-0.1

Pixels — [m;] x [G;] — actuators
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Figure 4. Convergence of CLOSE gains on the 2.0 sec following loop closing, for guide stars of Mr = 0 and 16 and
atmospheric rg of 14.5 and 9.0 cm. All G; are set to 0.5 at loop closing (blue line). G; values are shown as averaged over
the frame intervals given in the legend. Curves are smoothed along the i index for clarity. Final SRs are given in H-band
and computed from the cumulative exposure between frame 900 and 1000 (200 msec).

When comparing the G; values reached between Mp = 0 and Mpr = 16 cases, one can observe the effect of
the SNR-dependent optimization of the transfer function, with steady-state gain values dampened by typically
20-50% depending on the mode number and the r¢. Altogether, results presented on fig. 4 tend to validate that
— without any priors and regardless of the PWFS sensitivity reduction — CLOSE is able to make the modal
integrator adaptively converge to the adequate solutions, across a 1 to 2 second period.

5.2 Results with stationary turbulence

Besides the adaptive capability, it is most important to look at the AO performance achieved once CLOSE
reaches its steady-state behavior. In order to perform this analysis, we generalize the simulations to a larger
range of rg values and guide star magnitudes.

Measured performances are shown on figure 5, with the long exposure H-band SR plotted against the star
magnitude and computed for 5 different seeing conditions. For all the results the SR is averaged over 2-second
exposures, starting 2 seconds after the AO loop is closed, and with initial modal gains G; = 0.5 as previously.

We report the performance achieved for ry values from 8.9 to 21.5 cm, and for guides stars from Mz = 10
to 17.5 with CLOSE (solid lines). Circles overlaid at Mp = 10 and 16 are performance without using modal
gain compensation, but after an optimization of a global scalar loop gain. Square markers are when using
the dithering-based determination of modal gains as reported in previous work,'! and after an optimization of
the scalar loop gain. The latter dithering-based performance is also identical to what can be obtained using the
sensitivity normalization, the original method proposed by Korkiakoski et al.5 12

From the performances reported, it follows that CLOSE compares to other modal non-linearity compensation
techniques crafted for high-order PWFS, with added benefits: a single, real-time technique factors in both the
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non-linearity component and the transfer function optimization, with a far greater responsiveness to transient
events; and as compared to either of the aforementioned modal compensation techniques, offline computation of
modal gain abacuses or in-situ control matrices is no longer required.

5.3 Continuously varying turbulence

When mentioning the robustness of CLOSE regarding optimizing the modal integrator through transient events,
it is interesting to evaluate how the performance evolves for continuously varying seeing conditions.

We report on fig. 6 the results of a simulation in which the r¢ value changes from 22 cm to 7.0 cm then
back to 22 cm over the course of 100 seconds of operation, without ever opening the AO loop or performing any
external action on the AO parameters. A similar simulation was performed in previous work!! for several gain
compensation strategies. The performance is measured in terms of SR over successive 0.1 sec (solid lines) and
2 sec exposures (circles), starting 2 sec. after the loop is closed. An identical experiment is ran for guide stars
of Mr =5 and Mg = 16.

In practice, the COMPASS-generated numeric turbulence screen is continuously extruded from one edge of
the pupil, then translated with the simulated wind. The rg given on fig. 6 is the one of the wavefront pixels being
extruded at a given time; yet it takes 4 seconds for those turbulent features to entirely cross the pupil. This
induces a delay of about 2 seconds between the time a given rg is reported, and when the associated performance
is expected on the imager.

The SR complies with the values found for stationary ry cases for the bright and the Mz = 16 case, demon-
strating that although the seeing conditions vary very quickly, the responsiveness of the modal gain curve can
easily adjust the integrator regime for such variations, maintaining the maximum possible SR for a given rq/ Mg
combination. The symmetry of the two 7y decreasing and 7y increasing phases is also to be noted: CLOSE
enables the integrator to accommodate both cases with similar flexibility. Cases with the seeing improving were
noticeably less robust with previous modal compensation methods, as the increased sensitivity of the PWFS can
lead to a diverging integrator if the modal gains are not adjusted in a timely manner.
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The symmetry, in particular at Mpr = 16, also underlines that the integrator is adequately maintained in a
robust regime, without accumulation of waffle or divergence of single actuators, after more than 20 seconds spent
with a residual wavefront error of about 1 A RMS on the PWFS.

5.4 Additional capabilities

Not only CLOSE is able to track gains through varying observing conditions?*?, but it can also adapt the system

to some other situations. We have simulated CLOSE when sensing on double stars®", and tested the results
against different separations, different orientations with respect to the pyramid edges, and different flux ratios
of the guiding binary. The detailed results have not been reported in this paper, but we were able to verify that
the functioning point reproduced the same performance that could be obtained using standard methods. This
also demonstrates that an interaction matrix for a single star can be converted to another adequate to binary
sources using a modal rescaling only on our DM KL basis.

The test has also been done using uniform disk-like objects of various diameters from 10 to 800 mas (a
simulation of Titan as guide object?4¢). Not surprisingly, each of them exhibits a similar behavior where the
gains stabilize rapidly to the optimum value, with a performance level consistent with that found using classical
methods. The case of more peculiar objects (triple or multiple stars, galactic nuclei exhibiting a plateau around
a central peak, small globular clusters, etc.) has not been studied but we are confident that CLOSE would also
converge smoothly on those cases.

Also not tested yet when writing the present article, we think that CLOSE can also cope with variations of
the modulation radius (without a substitution of the command matrix), as this impacts the WFS sensitivity —at
first order— as a modification of the modal gains. Whether that interesting property can be leveraged is another,
wider topic to be discussed in the perspective of optimizing the overall pyramid sensor behavior even better.

We also need to mention that CLOSE can be applied to systems using other wavefront sensors than pyramids.
In particular, CLOSE could certainly help in the case of the centroid gain induced by quad-cells in a Shack-
Hartmann sensor, which acts as a global unknown multiplicative factor. We think it could also be of some help
in the case of significantly elongated laser guide stars (LGS), possibly truncated, which induce some unknown
fluctuations of the sensitivity in the measurements with the thickness changes of the sodium layer. However, we
think this would possibly have to be coupled with a smart choice of the modal basis to act on. We envision a
scheme where one CLOSE loop is run in the slope space to compensate centroid gain effects, and another in the
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modal space for integrator optimization, held together with adequate normalization conditions. We think that
CLOSE could be of help any time a modal gain optimization on an integrator law is to be done in a situation
where sensitivity fluctuations (either of the sensor, or the adaptive mirrors) are to be expected.

CONCLUSION AND PERSPECTIVES

We have presented a self-regulating method that allows us to track, either in hard or soft real-time, the modal
gains of the integrator controller in an AO system, in order to maintain the maximum performance against
variable conditions (seeing, wind speed, SNR) and variable sensitivity of the WFS. Our method differs from
previous works as it doesn’t require any knowledge about the sensitivity of the sensor, but permits to counteract
its variations. This property makes the method particularly suitable whenever sensitivity fluctuations of the
feedback loop (either of the sensor, or the adaptive mirrors) are to be expected, like in the case of high-order
PWFS designs on ELTs.

The method is based on the value of the temporal auto-correlation of the modal phase residuals computed
at a single given time-shift At, followed by the appropriate counter-reaction on the modal gain in order to lock
the previously mentioned At-correlation value to some chosen setpoint. We have demonstrated first that, for
some given conditions, there is an unequivocal relation between the gain and the value of that At-correlation,
and second that locking the At-correlation at a fixed well-chosen value through multiplicative adjustments of
the integrator gain will keep the phase residuals near their achievable minimum. The method has been called
CLOSE, for Correlation-Locked Optimization StratEgy.

We were able to experience through end-to-end AO simulations the remarkable behavior of the CLOSE
algorithm: extremely promising, it appears to be self-regulating, and seems to adapts naturally to any new case
whether we deal with any combination of good or low SNR, good or bad seeings, extended objects or else.?*
However, our simulations at the time of writing are restricted to a PWFS (that of the SCAO module of MICADO
ELT instrument, which was the primary target for our study). We are confident that CLOSE also applies to
others AO systems equipped with non-pyramid sensors: future numerical simulations should be able to confirm
this, and there is certainly a wealth of potential applications to follow. Today, CLOSE is our baseline algorithm
for optimizing the end-to-end simulations running with a pyramid sensor.

Coming now to limitations, we shall warn potential users that the update equation (eq. 4) contains an
integrator, which definitely requires a proper feedback to avoid any fatal divergence. Blocking of the feedback
on the correlation value may be triggered by unexpected effects, such as actuator saturation on the deformable
mirror, or by the absence of feedback from the main AO loop —which happens when the loop “crashes” or when
the flux disappears. Other cases may exist, but those are sufficient to draw our attention to the fact that eq. 4
needs to be completed with some monitoring and safeguarding system in order to be fully applicable to a real
system. We shall also investigate the impact of non-Kolmogorov input perturbations such as telescope wind-
shake, or vibrations. While telescope wind-shake is generally a low-frequency perturbation that should not harm
too much the algorithm, the way CLOSE will interact with high-frequencies vibrations potentially amplified by
the rejection overshoot remains to be looked in detail. Whether CLOSE reacts in a right or wrong way depending
on the frequency of the perturbation is not obvious at first sight.

Finally, it should be raised that CLOSE does not say anything about the WFS sensitivity value, which
knowledge is of importance for a correct compensation of non-common path aberrations. As a consequence, our
present algorithmic design for the SCAO sensor of MICADO includes both CLOSE and a standard algorithm
for measuring the WFS optical gain, which seems to be a waste. The possibility of deriving simultaneously
an optimum modal gain with the WFS optical gain is currently envisioned, based on the measurements of the
correlation for different At, possibly leading to an all-in-one algorithm.
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