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ABSTRACT

Data prepared by the SPHERE data center was utilised to create various candidate models to predict the raw
contrast achieved by a common SPHERE observing mode pre-observation. This may be used for improving
quality control, exposure time calculations and real-time observation decisions. The final model was selected
for testing through a cross validation and verification process on training and verification data sets. The final
model used a top level algorithm to classify data into regimes where particular physical processes dominated the
achieved contrast, and then considered unique sub-level models for modeling the contrast. For these sub-level
models both an empirical approach using machine learning, and a hybrid approach, mixing physical models with
machine learning algorithms for parameter estimation, were considered. The final model achieved a RMSE for
the predicted raw contrast of 1.31 x 10~* (logl0 RMSE = 0.25) on the test data set which outperformed both
the benchmark persistence and physical models.
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1. INTRODUCTION

SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch!) is an extreme adaptive optics (AO) in-
strument installed on the Melipal Telescope at the Paranal Observatory. Its primary science goal is imaging,
low-resolution spectroscopic, and polarimetric characterization of extra-solar planetary systems at optical and
near-infrared wavelengths. To help achieve this SPHERE is equipped with a series of coronagraphs in-addition
to having an extreme AQO system called SAXO?%? which operates at a frequency up to 1.38 kHz on bright tar-
gets with a 40x40 spatially filtered Shack-Hartmann (SH) wavefront sensor (WFS) and a 41x41 piezoelectric
high-order deformable mirror. To date SPHERE has discovered®® and imaged various planetary systems and
continues its search.

SPHERE is one among the many AO instruments at Paranal. These come in a range of flavours including
Single Conjugate AQO, Laser Tomography, Ground Layer AO, and Extreme AO depending on the scientific ob-
jective. Accordingly each AO system responds uniquely to changes in atmospheric parameters with respect to
the instruments scientific objective. With this increased complexity and range of behavior in each AO system
we can no longer assume blanket responses across systems in regards to performance as could be done with the
previous generation of seeing limited instruments. Luckily, empirical data is becoming more available with the
maturity of these second generation instruments. This data should be used to evolve models, not only to improve
methods of quality control and real time scheduling, but also improve exposure time calculations (ETC) and
gain further insight into instrument behavior. This also works towards the requirements for the ELT in regards
to optimal exploitation of atmospheric conditions, flexible short-term scheduling driven by real-time decisions,
and observation classification within 10 minutes.

Here we take advantage of SPHERE data mainly prepared by the SPHERE data center® to develop a new
model framework for predicting the raw contrast achieved by SPHERE pre-observation. We take this opportu-
nity to integrate lessons learned from the years of SPHERE’s operation and propose a top level classification
model for predicting when known instrumental effects (such as the low wind effect”®) dominate the achieved

For further information email Benjamin Courtney-Barrer at bcourtne@eso.org



Variable Label

Description

‘exptime’

science exposure time

simbad _FLUX_XX’

target flux in R-band or H-band (XX=R or H)

tau0_massdimm’

atmospheric coherence time

‘seeing_massdimm’

atmospheric seeing

7VO7

turbulent velocity (0.315 r,/7,)

’Air Pressure Normalised [hPa]’,

normalized air pressure

"Air Temperature at XX [C]’

air temperature a XX=2m,30m

'Dew Temperature at 2m [C]’,

dew temperature at 2m

'Relative Humidity at 2m [%]’,

relative humidity at 2m

"Wind Direction at 30m (0/360) [deg]’,

wind direction at 30m

"Wind Speed at 10m’,

Wind Speed at 10m

Wind Speed XX at 20m wind speed vector components, XX = U, V, W where
U,V is horizontal component at 330deg and 240deg respectively,
W is vertical component
map observation date onto unit circle and
project onto the summer axis
map observation date onto unit circle and

project onto the autumn axis

’summer _axis’

‘autumn_axis’

Table 1. variables considered for model features

contrast. For each classification class we then have class specific models where we explore both a purely empirical
approach with machine learning, and also a hybrid approach of mixing physical models with machine learning
algorithms for parameter estimation from empirical data. This work is one further step towards flexible and op-
timal short term scheduling that fully exploit the atmospheric conditions for SPHERE in-addition to improving
ETC. Furthermore, this may serve as an example for the models developed to meet the ELT requirements.

2. METHOD
2.1 Data

Models were created for predicting the raw achieved contrast of a SPHERE / IRDIS mode from measured
atmospheric conditions. We considered the most common IRDIS planet searching mode which achieves the
deepest contrast. This mode uses the N_ALC_YJH_S coronagraph with science filter D_H23 and AO frequency =
1.38kHz with gain = 1000. Future work will extend this model to other SPHERE modes. The SPHERE /IRDIS
observations considered in this work were provided by the SPHERE data center® and consisted of 53 observation
blocks (after data cleaning) taken between December 2015 to May 2018, with raw contrast calculated pxielwise at
300, 400 and 700mas. Various physical variables were considered for the analysis, with the primary ones outlined
in table 1. These were measured by the array of astronomical site monitoring instruments® at Paranal which
include telescope sensors, the meteo station, Multi-Aperture Scintillation Sensor (MASS) and Differential Image
Motion Monitor (DIMM). These variables were generally sampled every 1-5 minutes and were interpolated with
respect to the IRDIS exposure readout times. Extreme outliers were dropped from the data and no interpolation
was done where there were large gaps (more than 20 minutes) in the data. The data was randomly partitioned
into a training, verification and test set with 60%, 20%, 20% ratios respectively.

2.2 Methods for Dimension Reduction and Feature Selection

2.2.1 Kernel Principle Component Analysis

The data features were explored in both its raw physical interpretation (e.g. temperature, seeing etc), and also
in its kernel principle component projections. Kernel principle components were used so that more complex
non-linear structures in the data’s distribution could be captured. The full mathematical details of kernel PCA
can be found in Schlkopf’s 1997 paper.!® The key idea is that the covariance matrix used to calculate the



H Kernel Name Analytic Expression Constraints H

Linear (normal PCA) K(z,y)=(x-y+1) -
Polynomial K(z,y)=(z-y+1)7 d>0
Radial Basis function  K(z,y) = exp (—][z — y[|?) v>0
Sigmoid K(z,y) =tanh (az -y + 1) a>0,<0
Cosine K(z,y) = m -

Table 2. Kernels used for kernel principle component analysis

eigenvectors and eigenvalues (i.e. principle components) of M centered data points x in some given vector
space R™ relies on calculating the inner products of the respective vectors. ie. C = 1/M Z =0 w]x to solve
eigenvalue equation: Av = C'v Where v are the eigenvectors of C, also known as the datas principle components.
Using a kernel function K(x,y), Mercers Theorem guarantees the existence of a mapping to another space F
through the function ¢. ie. ¢ : R® — F, where the kernel function K(x,y) acts as an inner product in
the this mapped space: K(x,y) = (¢(x),d(y)). Therefore the covariance matrix in this new mapped space
iss C =1/M Z;Vio #(z;)¢(x;)T. Using the kernel property described above (known as the kernel trick) this
eigenvalue problem can be reformulated to find the principle components («) in this higher dimensional space F
and project down to the original space R™ without ever having to visit the space F or even explicitly know the
mapping ¢ - instead just explicitly calculate the kernel function itself. The reformulated eigenvalue problem is:
MMa = Ko Where K is a MxM matrix with elements K,; = (¢(z;), ¢(x;)). When projected to the original R"
space these principle components can therefore manifest as complex non-linear functions. The kernels considered
in this work were implemented with the scikit-learn package in python and are outlined in Table 2.

2.2.2 Mutual Information

Since a variety of candidate models were considered in this analysis, mutual information, which is a model
independent metric, was used for feature selection. The mutual information measures the information gained
(in bits) for predicting a label given knowledge about a feature. Mathematically the mutual information I(X,Y)
between variables X and label Y is defined as the difference in the full and conditional entropy H ie. I(X,Y) =
H(X) — H(X|Y) where H(X) = —FE[log(P(X))]. Explicitly The mutual information can be expressed for
probability distributions in X and Y:

ZZ Pxy (z,y loigfzng(x Y)) (1)

Where Pxy (z,y) is the joint distribution and Px (z) , Py (y) are the marginal probability distributions. Typically
non-parametric estimations are used to calculate the mutual information for N points without model specific
assumptions. For this analysis we use k-nearest neighbors (knn) estimator!!:1? due to its efficiency in multidi-
mensional settings. This method is implemented with the scikit-learn package in python which uses the nearest
neighbours to define local neighbourhoods for probability-volume elements used in estimating 1.

2.3 Machine Learning Algorithms

In this work various regression models were developed using machine learning algorithms. Therefore a variety of
standard off-the-shelf candidate machine learning algorithms were considered over the training and verification
process before final model selection for testing. These candidate machine learning algorithms are outlined below
and were implemented with the scikit-learn python package.

e Random Forest Regressor (RF)

e Multi Layer Perceptron (MLP) - also known as a feed forward neural network
e K-Neighbors Regressor (K-NN)

e Kernel Ridge Regressor (KR)



2.4 Top Level Model Structure

The top level of the model used a classification model to classify data into regimes where distinct physical
processes dominate the achieved contrast. This work only considered a thermal regime, where local thermal
effects such as the low wind effect” and dome seeing!® dominated the achieved contrast, and a standard regime
where the instrument should be operating under "non-extreme” physical conditions. The wind-driven halo effect
was not considered in this work, however it may be considered in future work. Each classified regime then had
unique models that were selected through cross validation and parameter tuning of the train and verification data
sets. This model structure is shown in figure 1. The classification model was developed using known institutional
knowledge of telescope/instrument behavior in combination with statistical analysis of the available data.

Regime
Classification
| Future work ---=-----
1
Standard Regime Thermal Regime Wind Dr1\.fcn Halo
Regime
| l
Learn Model Learn Model

Figure 1. Top level model structure for regime classification

2.5 Standard Regime Candidate Models

For the standard regime we considered two candidate models: one empirical model learnt purely through his-
toric data with machine learning algorithms, and a hybrid approach where additional parameters were added
to a simple physical model proposed by Serabyn et al,!* and models for the parameter were learnt via machine
learning algorithms.

During testing these models were benchmarked against the raw physical model (without the additional learnt
parameters) and also a persistence model with initial conditions set to the mean train-set contrast at the respec-
tive radius considered. To avoid biases, the training set was used for feature selection and reducing the number
of candidate models via cross-validation performed with a course-grid search, while verification sets were then
used for fine parameter tuning and final model selection for testing.

2.5.1 Hybrid Model

A hybrid physical /empirical model was considered where a simple physical model for coronagraphic AO systems
taken from Serabyn et al'* was adapted to include additional parameters which were fitted on the train set and
then modelled by machine learning algorithms. The basic principle of the physical model is that the scattered
light from a NxN actuator deformable mirror can be approximated by Fourier theory as 1-Strehl which appears
in a halo of size NxN spatial resolution elements (\/D).!* Therefore the limiting contrast that occurs in this halo
of scattered light may be approximated as (1 — Strehl)/N?2. The strehl ratio was approximated by the exponent
of the residual phase errors (02). i.e: Strehl = exp(—o?), Where we consider the following explicit phase error
terms of shack-hartmann (SH) fitting (012%), shack-hartmann alaising (02;,,.), AO servo lag (02,,.,,), and photon



shot noise (Jghot) defined as:
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Where D is telescope diameter, N, is total number of deformable mirror actuators, 7 is the servo loop time, 7, is
atmospheric coherence time, A\yy pg and \;,;, are the wavelengths used for the wavefront sensor and coronagraphic
image respectively, 7o w rs is the atmospheric coherence length at the wavelength of the wavefront sensor, dsubpup
is the SH sub-pupil diameter, and Nppotons is the total number of photons received in the wavefront sensor during
a single exposure.

Note that read out noise was not significant in the considered mode and therefore neglected in the noise budget
along with calibration errors. Also anisoplanetism errors were irrelevant since SPHERE AO is on axis with a
small FOV. Therefore the full benchmark physical model is:

1- el‘p(O'J%it + Uglias + O'gervo + Uf;hot)
C= (6)
Nact

The hybrid model was then developed by including a time dependent scaling factor («(t)) for the error budget
terms, and an additional static noise error budget term (ostqtic) to account for calibration and non common path
aberrations (NCPA) between the science detector and wavefront sensor.

1-— exp(a(t)(afcit 4+ 0210s T ervo + JIQ)hot) + Ostatic)
C= ~ (7)
act

The idea was to develop models for these parameters «(t), ostaric using machine learning algorithms outlined
in section 2.3. The parameters were first fitted to the training data and then relationships between the fitted
parameters and other environmental variables were searched for to find effective features for the models. Since
a(t) varies in time while o444 is constant for a given observation run; an iterative fitting approach was taken
where a(t) was fitted dynamically to the data within a moving box of 120 seconds, and then gt was fitted
statically on the entire time series until a reasonable level of convergence was reached. The verification data set
was then used for finer parameter tuning and then to compare the hybrid and empirical models.

2.5.2 Empirical Model

A purely empirical model was considered without any prior physical knowledge of the system. Here we used
the machine learning algorithms introduced in section 2.3 to learn a predictive contrast model from the training
data, and then used the verification data for finer parameter tuning and to compare the empirical and hybrid
models.

2.6 Thermal Regime Candidate Models

Since limited data was available where thermal effects dominated the contrast, data was considered from both
the train and verification sets and an empirical model was used where models were trained with the candidate
machine learning algorithms outlined in section 2.3.



3. MODEL TRAINING AND SELECTION
3.1 Top Level Regime Classification

The motivation for a top level regime classification model is that many of the non-standard regimes where distinct
physical processes dominate (e.g. dome seeing) do not occur often, and therefore without extensive training data
it is very difficult for models to accurately learn these effects. During the early analysis before a top level model
was implemented it was clear that the outliers of any trained model when tested on the verification set occurred
at low wind speeds and ambient temperatures around 15C, which happens to be the maximum temperature
which the M1 mirror is actively cooled. In-addition the physical processes of dome seeing and low wind effect are
well understood and therefore this knowledge can be utilized to make learning the models an easier task. Anal-
ysis of the train data set clearly highlights how thermal differences within the telescope optics and surrounding
environment as well as low wind effects dominate the achieved contrast. Furthermore thermal effects commonly
dominated when there was excellent seeing and coherence time. Furthermore the wavefront sensor spatial filters
are generally selected in real-time based on these two measurements. This issue can clearly be seen in figure 7
which shows a clear bi-modal distribution of the contrast for the small wavefront sensor spatial filters. Defining
a threshold between mode 1 (good contrast) and mode 2 (bad contrast) for the small wavefront sensor filter at
log10 contrast = -3.75 we can clearly discriminate these modes with the ambient temperature and wind speed
indicating that mode 2 (bad contrast) is indeed in a regime where thermal effects are dominate. These results
highlight why thermal effects should also be considered for real-time observation decisions and quality control.
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Figure 2. [Left] histogram raw contrast for different wavefront sensor (wfs) spatial filters. [Middle/Right] Splitting the
bi-modal contrast distribution for the small wfs spatial filter into two modes, we plot histograms of temperature and wind
speed for each mode and can clearly discriminate between them.

In the train and verification data sets only 2 observations were considered to be in a regime where thermal
effects dominated the achieved contrast. This classification was done by manual inspection by considering ther-
mal parameters in-addition to the achieved contrast relative to atmospheric conditions. Based on the best
discrimination threshold for the thermal regime with respect to these parameters, the following simple threshold
filter was used to classify data into the standard or thermal regime:

If wind speed magnitude at 20m<3m/s & vertical wind speed at 20m<1m/s & Temperature at 2m<13.5C
Then thermal regime

Else standard regime
Based on this classification the test data set held one observation classified in the thermal regime.

3.2 Standard Regime - Training, Verification and Model Selection

For the standard model two different approaches were experimented; a purely empirical model and a hybrid
model as described above.



3.2.1 Empirical Model

For selecting features for the empirical model we consider the mutual information of the logl0 contrast for the
training data against both the physical parameters, and also the projected kernel principle components. Obser-
vations that were classified in the thermal regime were removed. Figure 7 plots the mutual information for given
parameters. Note for the kernel PCA we only show the results from the rbf and polynomial kernel as these were
the best performing of the kernel methods. Interestingly the mass-dimm coherence time and seeing parameters
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Figure 3. Mutual Information calculated between the logl0 contrast and various candidate features derived from physical
measurements and kernel principle component projections of the physical variables

held relatively low mutual information with the contrast while the star magnitude was the most informative
parameter. The reason for this lower than expected score for 7, and seeing is that the considered instrument
mode for IRDIS was one of the most extreme modes with the fastest AO loop speed at 1380Hz (0.7ms). Therefore
the dominating noise source generally came from low photon counts on the SH.

Platform level wind parameters generally had a high mutual information with contrast. This was expected
as wind direction and speed are known to correlate strongly with the turbulence profiles brought to Paranal.
For example subtle (5m/s) westward winds coming from the ocean correlate strongly with excellent conditions.
However surprisingly a range of unexpected atmospheric parameters such as pressure and temperature held
relatively high mutual information with contrast. Some mutual information with these parameters could be
expected due to correlations between variables, for example, pressure is known to drive wind speed which has
correlations with Paranal conditions. Also, even though data with extreme thermal effects were classified in the
thermal regime, less extreme cases that weren’t filtered out can still produce local turbulent effects that affect
performance. These arguments at most would suggest weak to moderate mutual information with contrast,
however given the relatively high score, further explanations were sought. It was found that some of these pa-
rameters had large un-physical jumps in their measurements that correlated strongly with jumps in SPHERE’s
contrast. The explanation for this is that the telescope pointing model was updated every three minutes with
the temperature, pressure and humidity measurements to account for atmospheric differential refraction. Hence
measurement errors in these variables corresponded to telescope pointing errors. Removing these data points
reduced the contrast mutual information with these variables. Since these measurements were taken further
upgrades and improvements have been made to Paranal’s atmospheric site monitoring instruments to minimize
these effects. The relatively high dependence between pressure, temperature and contrast has also been found



in data from the GPIES instrument at the Gemini Observatory, which is another high contrast imaginer similar
to SPHERE!%1?

From the above analysis two sets of features were considered; one pertaining to physical variables and the
other to rbf kernel principle components. The physical features were selected due to having the highest mutual
information with contrast in their group, with the exception of Vo = 0.315r(/tau, for the physical features, which
was also included based on analysis from a random forest feature importance (not included here for brevity).
The physical features selected were: R band flux, turbulence speed V,, air Temperature at 2m, normalized air
pressure, and wind direction. The rbf kernel principle components were selected based on eigenvalue magnitude
(captured variance). The top four eigenvectors were selected for the rbf kernel features.

For each set of features a 5-fold cross-validation on the train set was performed for each candidate model
over various points in a course parameter grid search. The model performance was assessed based on the average
mean absolute error (MAE) and explained variance. The 2 best models were then selected for verification. These
results are shown in 4. Both the neural network (MLP) and Random Forest (RF) with the rbf kernel principle

train set cross-validation using best parameters
found from parameter grid searches
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Figure 4. explained variance and mean absolute error for 5-fold cross-validation on the train data set for each candidate
machine learnt model after a course grid parameter search.

components as features performed best across all radii besides RF for 400mas. The verification set was then
introduced to perform a finer grid search for these two models and a final comparison was performed. It was
found that the trained neural network essentially learned the train set mean with little variance and therefore
did not generalize to new data. Therefore the random forest was selected as the final model with that used 10
tree estimators, with a MSE splitting criteria, no maximum tree estimator depth, minimum samples required for



split = 2, and min samples for leaf node = 1.

3.2.2 Hybrid Model

Using the training data set the hybrid model parameters were fitted from equation 7. The parameter o was
dynamically fitted by least squares within a moving window of 5 minutes (typically a few exposures) using a
prior estimate of ostqtic. The Osiqric parameter was then subsequently fitted using the prior calculated «f(t).
This cycle was repeated until a reasonable convergence. It was found that the convergence was not unique and
depended on the initial conditions of ostqtic. Therefore 3 prior values (high, medium, low) were used for osiqatic
and «, osqatic fitting iterations were repeated 5 times (early stopping). The converged parameters «, ogtqtic from
the 3 initial conditions were then averaged for the final result. A histogram of the fitted parameter values are
shown in figure 5. Both the fited o and o444+ parameters followed a skewed lognormal distribution. Assuming
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Figure 5. Histograms of fitted o, ostatic parameters on training data set

Ostatic dominated by NCPA these results agree well with those measured by ZELDA which measured the NCPA
in SPHERE in the range of 30 - 60nm over two nights'6 .

In general, it was found that kernel principle component projections held the most collective mutual infor-
mation (rbf and 3rd degree polynomial performing best for o and osiatic respectively as shown in figure 6).
Nevertheless both physical variable and kernel principle component features were tested in the train set 5-fold
cross-validation. Features for a and o044 parameters were selected via the same method as the empirical
model as outlined in section 3.2.1. Tables 3 and 4 outline the train set cross validation performances (using the
explained variance, and mean absolute error as metrics) of the respective machine learning algorithms applied to
a and oqtic- The specific physical variables used are explained in the table captions. Based on these results the
hybrid model verification (and comparison against the empirical model) was done with a multi-layer perceptron
(feed forward neural network) for both the «a(t) and ogiqtic parameters using the top four ranked RBF kernel
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Figure 6. Mutual information of a (top row) and ostatic (bottom row) for both physical parameters (left column) as well
as the rbf and 3rd degree polynomial kernel projections (right column) respectively.

radius log;, a(t) at 300mas log,, a(t) at 400mas log,, a(t) at 700mas
(MAE/R?) (MAE/R?) (MAE/R?)
features | physical* | RBF kernel | physical* | RBF kernel | physical® | RBF kernel
KRR 0.34 /0.04 | 0.31 /0.13 | 0.34 /0.02 | 0.32 /0.13 | 0.29 / 0.02 | 0.26 / 0.16
kNN 0.32 /0.00 | 0.35/0.00 | 0.31 /0.00 | 0.37 /0.00 | 0.25 / 0.08 | 0.32/0.00
MLP 0.32/0.09 | 0.30/0.12 | 0.32/0.08 | 0.31 /0.11 | 0.24 / 0.24 | 0.26 / 0.16
RF 0.35 /0.00 | 0.30 /0.07 | 0.35/0.00 | 0.32/0.00 | 0.30 / 0.00 | 0.29 / 0.00

Table 3. Mean cross validation mean absolute error (MAE) and explained variance (R?) for 5-fold cross validation on train
set across all candidate models for the «(t) parameter, comparing both physical variables and kernel principle component
projections as features. *Physical variables at 300,400 & 700mas were R flux, temperature at 2m , wind direction, wind
speed U at 20m.

PCA and 3rd degree polynomial PCA projections as features respectively. The «(t) MLP used 1 hidden layers
with 50 neurons and a logisitc activation function while the o4t4tic MLP used 2 hidden layers with 20 neurons
and logistic activation function.

3.2.3 Verification

The verification data points classified in the standard regime were then used to select between the hybrid and
empirical model for final testing. Both models had comparable results. The empirical model had a lower logl0



radius logg Ostatic at 300mas log,o Ostatic at 400mas logg Tstatic at 7T00mas
(MAE/R?) (MAE/R?) (MAE/R?)

features | physical* | Poly kernel | physical* | Poly kernel | physical* | Poly kernel

KRR 0.26 / 0.08 | 0.25 /0.13 | 0.27 /0.08 | 0.27 / 0.11 | 0.17 / 0.03 | 0.17 / 0.08

kNN 0.27 /0.00 | 0.25 /0.19 | 0.28 / 0.00 | 0.27 / 0.17 | 0.18 / 0.00 | 0.17 / 0.09

MLP 0.24 /013 | 0.23/0.23 | 0.26 /0.14 | 0.25 /0.19 | 0.16 / 0.12 | 0.17 / 0.06

RF 0.28 /0.00 | 0.28 /0.04 | 0.28 / 0.08 | 0.28 / 0.14 | 0.18 / 0.00 | 0.19 / 0.00

Table 4. Mean cross validation mean absolute error (MAE) and explained variance (R?) for 5-fold cross validation on
train set across all candidate models for the ostqtic parameter, comparing both physical variables and kernel principle
component projections as features. *Physical variables at 300mas: were Air pressure, wind direction, wind speed U 20m,
wind speed W 20m., *Physical variables at 400mas: exptime, flux R, seeing, air temperature. & *Physical variables at
700mas: exptime, flux R, seeing, air temperature
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Figure 7. Predicted vs Measured raw contrast for the empirical (left) and hybrid (right) models on the verification data
set.

RMSE indicating slightly better performance at lower contrasts, while the hybrid model had a lower RMSE
indicating better performance at higher contrasts. However the hybrid model also had more explained variance
(R?) which ultimately led to the decision to use the hybrid model for final testing.

3.3 Model Selection - Thermal Regime

There were only 2 observations in the train and verification sets that were classified in the thermal regime. Hence
the idea of cross validating various candidate models was somewhat meaningless in the hope of generalization.
Therefore a more direct approach was taken where we used the simple k-nearest neighbors algorithm using
uniform weighting and k=10 which was trained on the combination of train and verification data sets (80% on
training, 20% test).

4. TEST RESULTS

The full model (considering both standard and thermal regime) was tested on the test data set. The performance
is outlined in figure 8 and we compare the results to both the benchmark physical model (without «(t) or osatic
parameters) and also a persistence model (modelling the contrast as the train set average) in table 5.

5. DISCUSSION

The model generalized reasonably well on the test data which contained 11 observations, with 1 observation clas-
sified in the thermal regime. The test performance was slightly better then the standard regime hybrid model
verification results in regards to the models RMSE. This slight improvement can be explained by the fact that
the mean test contrasts were 18% lower than the mean verification contrasts. However the explained variance
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Figure 8. Predicted vs Measured raw contrast on the test data set for the full model, using a hybrid model in the standard
regime and empirical model in the thermal regime.

H - hybrid model H persistence model benchmark physical model* H

[RMSE 131x10* [ 1.46x10°* 1.49 x 10~7
Table 5. RMSE comparison to benchmark models, scaling factors applied to benchmark physical model at 300,400,700mas
were 0.6, 0.5, 0.25 respectively

was considerably lower which was partly due to the poorer predictions of the contrast in the thermal regime
due to limited data. The test results for the full model also had a considerable improvement in performance
against the benchmarked persistence model and benchmark physical model as outlined in table 5. Comparing
these results to literature, D.Savranskya et al'®> mined the GPIES data base and were able to predict the reduced
contrast (pre-observation) with an logl0 RMSE of 0.18 (RMSE = 5E-5) using a purely empirical two layer, 6
feature (prior to observations), 16 neuron MLP neural network. This result!® is roughly a factor of 2 better than
achieved here. Differences in results can be attributed that fact that they had much more data (we trained on
only 35 observations) and were considering the reduced (rather than raw) contrast which averages out some of
the difficult-to-predict stochastic processes present in each exposure. Considering these challenges the results
reported here are encouraging, and point to the advantages of using hybrid methods where prior physical knowl-
edge/models of the instrument are extended using statistical methods and machine learning algorithm to predict
difficult parameters and modify the physical model with regard to empirical data.

Current work is being done to develop a pipeline for calculating the raw contrast in realtime as SPHERE
observations are being taken. These results are being added to the The MSE DataLab'” database which con-
tains a huge array of telescope and instrument data ready for machine learning applications. This database will
be used to test and improve this model in-addition to developing new models.

6. CONCLUSION

Various candidate models were considered to predict the raw contrast achieved by a SPHERE / IRDIS mode
prior to observations were considered. A final model was selected for testing through a cross validation and
verification process on train and verification data sets. The final model tested used a top level algorithm to
classify data into regimes based on dominating physical processes, and then considered unique sub-level models
for modeling the contrast. For these sub-level models both an empirical approach using machine learning, and
hybrid approach mixing both physical models with machine learning algorithms for parameter estimation were
used. The final model achieved a RMSE contrast of 1.31 x 10~% on the test data set.
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