
METIS AO RTC Prototype

Martin Kulas, Horst Steuer, Thomas Bertram, and Florian Briegel

Max Planck Institute for Astronomy, Heidelberg, Germany

ABSTRACT
Adaptive Optics (AO) will enable the Extremely Large Telescope (ELT) to perform observations close to the
diffraction limit. As part of the Mid-infrared ELT Imager and Spectrograph (METIS) team, we develop a real-
time computer (RTC) implementing the control loops for Single Conjugate AO (SCAO). The wavefront control
loop has the tightest timing constraints: It receives the images from the wavefront sensor at up to 1 kHz, computes
commands and sends them to the adaptive mirrors of the ELT. The sheer scale of the ELT in terms of the number
of actuators driven by the SCAO system requires unprecedented demand of computational performance to run
the wavefront control loop in hard real-time.

Here we present results from the preliminary design phase (PDR) and ongoing work towards a prototype for
the real-time control system that is divided into a hard real-time core and a soft real-time cluster. We focus on
the hard real-time computer (HRTC) and evaluate the performance of a prototype using Graphics Processing
Units (GPU) as hardware accelerators. Using a matrix vector multiplication (MVM) based reconstructor, we
show that the main timing requirement is fulfilled.

Keywords: AO, RTC, GPU, MUDPI, METIS, ELT

1. AO RTC IN METIS SCAO
METIS is the Mid-infrared ELT Imager and Spectrograph for the ELT.1 Its single conjugate AO system (SCAO)
will allow observations close to the diffraction limit. The block diagram in figure 1 depicts METIS SCAO and
its environment.

Science light path

SCAO WFS light path

M
4

LC
S

M
5

LC
S

M
4

LC
S

M
5

LC
S

Science
FPs

derotator
SCAO
WFS

ELT METIS
SCAO Control System

Science
FPs

SCAO Module

ELT CCS

Active Optics / offsetting commands

MS LCS
M1 LCS
M2 LCS
M3 LCS

5316 + 2 commands @ f AO Hz

5316 commands @ fAO Hz

2 commands @ < fAO Hz

pupil stabil. m
od

ula
to

r

fie
ld

se
lec

t

AO OCS

AO FCSHRTC SRTC

SCAO RTC

DCSs

Figure 1. Block diagram of METIS SCAO and its environment.

The heart of the METIS SCAO is the real-time computer (RTC). It is split into the two following components:

• HRTC: Hard Real-Time Core for the main AO loop, namely wavefront control (WFC) loop. It receives
frames from the wavefront sensor (WFS), computes corrective optics commands and sends them to the
ELT Central Control System (CCS). Additionally, it sends telemetry data (e.g. calibrated WFS images)
to the SRTC for further processing.

• SRTC: Soft Real-Time Cluster supervises the HRTC and improves its AO performance. It runs control
loops using HRTC telemetry data and communicates with the AO Observation Coordination System (AO
OCS) sending telemetry data and receiving configuration parameters.

The table below gives an overview of the key METIS SCAO properties that are relevant for the RTC:

WFS type Pyramid WFS with 4 sides
WFS pupil size 93 × 93
Subapertures 6785 (i.e. 13,570 gradients)
WFS detector readout speed 1 kHz
Number of corrective optics actuators 5316 + 2 = 5318
Max. RTC computation time 909µs

According to ESO,2 RTC computation time is defined as the “time elapsed between the first WFS data
received at the RTC and the last command data transmitted by the RTC”.

In this paper we present our preliminary results in designing and developing a HRTC which can deliver the
necessary performance given the constraints regarding problem size and timing described in the table above. In
the following section, we describe our current design for the HRTC software. In Sec. 4 we describe the current
setup for our performance evaluation including an analysis of the necessary data throughput. Preliminary results
of the performance evaluation are presented in Sec. 5. Sec 6 gives an overview of our planned activities towards
completing the RTC prototype and finally a conclusion of our findings is given in the last section.

2. RELATED WORK
Adaptive optics became an important technology in astronomy since the late 1980’s when the first AO system
for astronomical infrared images COME-ON (CGE Observatoire de Meudon ESO ONERA) was tested at the
1.52m OHP telescope in France. It later was deployed at the ESO 3.6m telescope at La Silla, Chile.3 COME-ON
had a deformable mirror with 19 actuators and its wavefront computer was able to process wavefront images at
200Hz using a least squares approach. This wavefront computer was equipped with a 32bit processor Motorola
68020,4 which can deliver 5.36 million instructions per second (MIPS) at 33MHz.5

COME-ON was developed as a prototype-system for the European Very Large Telescope (VLT) and could
be demonstrate, ”that adaptive optics works reliably and repeatingly for the correction of astronomical infrared
images”.6 The first adaptive optics system on the VLT is the Nasmyth Adaptive Optics System (NAOS) which
had its first light in 2001.7 The system was designed to process up to 144 active subapertures in the WFS
images at 444Hz and drive 185 actuators.8 Compared to the prototype COME-ON this meant a significantly
increased demand on the computational performance. Here, the computation could not be handled by a single
processor but the wavefront correction had to be distributed to four specifically designed boards, each holding
two computation modules with three Texas Instruments DSP TMS320CS40 microprocessors each.9 Each of these
microprocessors can deliver up to 30 MIPS or 60 MFLOPS.10

While the ELT is currently under construction, adaptive optics systems for all of the first light instruments are
being developed. Besides METIS, the first light instruments are the ’High Angular Resolution Monolithic Optical
and Near-infrared Integral field spectograph’ (HARMONI), ’Multi-AO Imaging Camera for Deep Observations’
(MICADO), and the ’Multi-conjugate Adaptive Optics Relay for the ELT (MAORY)’. Due to the differing
requirements regarding e.g., the latencies and the number of laser guide stars, different RTC architectures are
being evaluated for these instruments.

Jenkins et al.11,12 propose a CPU based approach and were able to show that for a ELT sized SCAO problem,
they were able to achieve a latency of less than 600µs using a Xeon Phi multi-core processor (<700 for a similar

AMD Epyc) system. They also proposed a multi node RTC architecture for the multi-conjugate optics(MCAO)
and laser tomographic (LTAO) case as specified by MAORY and HARMONI, where each node of the eight nodes
is based on a multi-core CPU system.

A different architecture is proposed by Clénet et al.13 for the specification of MICADO: instead of distributing
computational work to the cores of a CPU-only system, it is offloaded to GPU accelerator cards. During
prototyping a Nvidia DGX-1 with eight Nvidia P100 GPUs was used14 which can deliver up to 170 TFLOPS in
half precision.15 A similar GPU-based architecture was assessed for the MICADO-MAORY SCAO RTC.16

3. HRTC PROTOTYPE DESIGN
The HRTC has to run the main AO loop in hard-real time. To stay within this challenging constraint the use of
hardware accelerators is necessary. For the prototyping activity, we chose a flexible software design which allows
to test different hardware accelerator types with relatively low effort.

hrtcMain

telemetryMonitorwfsSimCamera

IceTelemetryRecordSender

TelemetryRecordQueue
RtmsPacketReceiver

CorrectiveOpticsPipelineStage PipeCameraPipelineStage Pipe WfcPipelineStage

 FREDA/RTMS/MUDPI

 ZeroC Ice .

Figure 2. HRTC pipeline structure: CameraPipelineStage reconstructs the WFS camera frame from the
received RTMS packages, then WfcPipelineStage computes the command vector and provides telemetry to
CorrectiveOpticsPipelineStage which finally send the telemetry data to a telemetryMonitor.

Figure 2 depicts the building blocks of our HRTC program called hrtcMain. The program is designed as
a pipeline with several functional stages. Currently, the only input to hrtcMain are WFS camera frames sent
over Ethernet via RTMS protocol (Real-Time MUDPI Streaming). At a later stage in the development process,
additional inputs like control parameters provided by the SRTC will be implemented. Currently the only output
sent by hrtcMain are the telemetry records as described in Sec. 4.1.2. Albeit DM command vectors are being
produced by the program, in this stage of the development process we chose only to send telemetry data, as they
incur a larger traffic on the network and they should be enough to demonstrate the feasibility of the approach.

The building blocks of hrtcMain itself are described in the following table:

RtmsPacketReceiver Receives data packages from the WFS camera over Ethernet via RTMS
protocol (Real-Time MUDPI Streaming).

CameraPipelineStage Reconstructs the WFS camera frame from the received data packages
and provides them via a pipe to the WfcPipelineStage.

WfcPipelineStage This stage computes the corrective optics commands and is computa-
tionally expensive. It calibrates the WFS frame by subtracting pixel-
wise offsets and background and correcting for gain. It then computes
the WFS signal from the four pupils of the pyramid sensor before cal-
culating the command vector by a matrix vector multiplication.

CorrectiveOpticsPipelineStage Sends out the corrective optics commands and inserts the telemetry
records into the TelemetryRecordQueue.

IceTelemetryRecordSender Instances of this class transmit the telemetry records via ZeroC Ice17 to
a telemetry monitor.

The computationally most demanding stage in the pipeline is the WfcPipelineStage. As such it is designed
as an abstract class so that by inheriting from this base class, programmers are able to implement the WFC
computation with different hardware accelerators. Currently, two specialized classes exists: one class supports
GPUs and one class contains a reference implementation in plain C++.

4. HRTC PERFORMANCE EVALUATION SETUP
One design goal of the METIS HRTC is supporting hardware accelerators like GPUs and NUMA computer
systems. For the results presented in this paper, GPUs are used as hardware accelerators. We use a single
x86-64 server with an AMD Ryzen Threadripper 2950X CPU and NVIDIA GPUs as hardware platform and
implement the main loop in a single operating system process. For the implementation of the main loop, we
used C++11 and NVIDIA CUDA 10.0.

Figure 3 depicts the experimental deployment. The pixel stream was generated by an operating system
process simulating a WFS camera. Both the HRTC main process and the WFS simulation camera process
were located in the same workstation. Both processes communicated via the IPv4 socket interface using RTMS
packets. The telemetry stream was sent out to a telemetry sink over a 10GbE.

HRTC Workstation
{CPU= AMD Ryzen Threadripper 2950X}

{OS= CentOS 7, Linux 3.10}
{isolcpus=3-7,19-23, irqaff inity=0,1}

{GPUs= 2x GeForce RTX 2080 Ti}

wfsSimCamera hrtcMain

Telemetry sink
{OS= CentOS 7}

telemetryMonitorTelemetry records
10GbE

MTU: 9000

Figure 3. Experiment deployment: the AO main loop and the simulated WFS camera as data provider reside in the
same physical system, while the telemetry monitor is deployed on a different computer.

4.1 Memory Throughput Analysis
In the following, an analysis of the theoretical memory throughput is presented.

4.1.1 WFS Pixel Stream
The wavefront sensor generates frames with a rate of up to 1 kHz. The detector region of interest is 192 ×186
pixels = 35,712 pixels with 4 Byte per pixel. These frames are fragmented into RTMS packets according to the
ESO FREDA (inFraRED cAmera) packet description:18

• 1 RTMS leader packet: 54 Byte

• 28 RTMS payload packets:

– 27 RTMS payload packets: 5170 Byte
– 1 RTMS payload packet for the remaining pixels: 4658 Byte

• 1 RTMS trailer packet: 42 Byte

The total frame size on the UDP interface is 144,344 Byte. Thus, the wavefront sensor generates a pixel
stream with a throughput of approx. 145 MByte/s which has to be consumed by the HRTC.

4.1.2 Telemetry Stream
The AO loop generates telemetry that can be used to estimate system parameters like e.g. seeing and to
optimize AO loop parameters like e.g. gains. In each AO loop cycle, the HRTC generates a telemetry record
that is composed of the following elements:

• Frame counter: 4 Byte

• Corrective optics command vector: 5318 × 4 Byte = 21,272 Byte

• WFS signal vector: 13,570 × 4 Byte = 54,280 Byte

• Subaperture intensities: 6785 × 4 Byte= 27,140 Byte

• Calibrated frame: 192 × 168 × 4 Byte + 2 × 4 Byte= 129,032 Byte

• Timestamps: 7 × 8 Byte = 56 Byte

The total telemetry record size is 231,784 Byte which theoretically produces a data stream of approx.
231 MByte/s on the Ethernet excluding the network protocols’ overhead when sent to the telemetryMonitor.

4.1.3 Data Transfer between Host and Hardware Accelerator
Hardware accelerators are commercial off-the-shelf (COTS) GPUs, namely two instances of GeForce RTX 2080
Ti. Both GPUs were inserted in PCIe 3.0 slots with 16 lanes which theoretically enables approx. 16 GByte/s
throughput in both directions between the GPUs and the CPU. No NVlink was used to connect the GPUs
directly.

The memory throughput provided by PCIe (approx. 16 GByte/s) significantly exceeds the memory through-
put demand by both the WFS pixel stream (approx. 145 MByte/s) and the telemetry stream (approx. 231 MByte/s).

We confirmed the achievable memory throughput of the PCIe bus by measuring it with the NVIDIA utility
bandwidthTest. As shown in the table below, the achieved memory throughputs fall short of the specified
throughput of 16 GByte/s but suffices for the 376 MByte/s needed in this stage of the prototype.

source to destination Memory throughput [GByte/s]
Host to device 12.8
Device to host 13.2
Device to device 519.2

4.1.4 MVM Memory Throughput
The METIS SCAO PDR baseline reconstructor is based on MVM. The reconstruction matrix size is 5318 ×
13,570 × 4 Byte = 288,661,040 Byte. Thus, the required memory throughput for loading the reconstruction
matrix in each loop cycle is approx. 289 MByte / 0.909µs = 318 GByte/s. Note that this data is loaded only
from random access memory (RAM) or caches to the processing units in each loop cycle and does not need to
traverse any network connection with this frequency. While the reconstruction matrix in the final version of the
prototype would need to be updated and sent over the network every few seconds, in the current prototype this
is not implemented yet, and the matrix is loaded into the RAM at the beginning of the experiment.

Compared with loading the reconstruction matrix, the memory throughput demand by the WFS pixel stream
and the telemetry stream is negligible. The same applies to other AO loop tasks like pixel preprocessing: they
require a much smaller memory throughput than the wavefront reconstruction task. Overall, the wavefront
reconstruction MVM dominates the memory throughput demand.

The used GPU GeForce RTX 2080 TI provides a theoretical memory bandwidth of 616 GByte/s.19 Our
measured memory throughput of approx. 519 GByte in section 4.1.3 satisfies the memory throughput demand.

4.2 Timings
The METIS HRTC generates a telemetry record in each AO loop cycle. Part of the telemetry record are the
timestamps depicted in figure 4 and defined in the following table:

RTC computation time = T6 - T1
Corrective optics command delay = T6 - T0

Pixel
transmission

Schematic HRTC Timing Diagram

WFS

HRTC

ELT CCS M4 / M5
application

Corrective optics
command transmission

WFC computation

WFS pixel reception

T3

T6T5

T4

T2T1

T0

Figure 4. Schematic METIS HRTC timing diagram.

Timestamp name Definition
T0 This timestamp contains the closest time to start the transmission of the first FREDA

pixels over the network. The HRTC extracts this timestamp from the FREDA leader
packet.

T1 Pixel reception start timestamp. Generated when HRTC receives the first FREADA
payload packet.

T2 Pixel reception end timestamp. Generated when HRTC receives the FREDA trailing
packet.

T3 WFC pipeline stage start timestamp.
T4 WFC pipeline stage end timestamp.
T5 Corrective optics pipeline stage start timestamp.
T6 Corrective optics pipeline stage end timestamp.

The delay definitions below are derived from the timestamps and are used in the performance valuation
experiments to analyze the impact of the different stages on the overall performance:

Delay name Definition
First WFS pixel transfer delay T1 - T0
Camera pipeline stage delay T2 - T1
WFC pipeline stage delay T4 - T3
Corrective optics pipeline stage delay T6 - T5
RTC computation time T6 - T1
Corrective optics command delay T6 - T0

Note that Fig. 4 shows overlapping time segments for most of the delays. This is motivated by the fact that
the underlying algorithms theoretically can start working on partial data before the previous stage has finished.
This can be used to decrease the overall delay from pixel data reception to command vector transmission, but
in our case this has not been implemented. In the current version of our prototype, the different time segment
are sequential. This means that the ’first WFS pixel transfer delay (T1-T0)’ in our case corresponds to the pixel
transmission delay.

5. HRTC PERFORMANCE EVALUATION
We evaluated the performance of the HRTC prototype using the setup described in the previous section. In our
experiment the AO loop performed 300,000 cycles. For METIS AO, the RTC computation time has to be less
than 909µs as mentioned in section 1. Thus, in this experiment we measured the total HRTC computation time
per frame. Additionally we were interested in a break down of the computation time on the different stages for
further optimizations. Finally, we tested the data throughput on the network to ensure that our Ethernet setup
can cope with the data rates and that the computation is successfully conducted on all frames and none are
dropped.

5.1 Completeness of Frame Transmission and Processing
Due to the hard real-time constraints under which the HRTC has to perform, there is not enough time to repeat
sending of packets lost during transmission over Ethernet. Additionally the HRTC pipeline is designed such that
if a stage stalls for any reason, data frames are skipped instead of being queued for later processing. Ideally, all
frames should be processed in time without dropping any.

In our experiment, we tested if any frames were dropped. All WFS frames were received successfully by
the CameraPipelineStage. Also, no telemetry record was lost during transmission but all records were trans-
ferred successfully to the telemetryMonitor indicating that all stages of the pipeline stayed within their timing
constraints and no packets were lost during transmission.

5.2 Telemetry Stream
We expected the telemetry stream to incur a data throughput of at least 231 MByte/s (see Sec. 4.1.2) based on
the payload alone. We measured a data throughput of approx. 246 MByte/s on the Ethernet interface. Thus,
roughly 15 MByte/s was protocol overhead of ZeroC Ice.

5.3 Timings

0 50000 100000 150000 200000 250000 300000
Sample no.

550

600

650

700

750

800

C
o
rr

e
ct

iv
e
 O

p
ti

cs
 C

o
m

m
a
n
d

 D
e
la

y
 [

s]

mean: 555 μs (σ: 5 μs)
min: 517 μs
max: 807 μs
median: 554 μs
99.99 percentile: 641 μs

(a)

540 560 580
Corrective Optics Command Delay [s]

0k

10k

20k

30k

40k

50k

60k

co
un

t

(b)
Figure 5. Corrective optics command delay time series (a) and histogram (b). Histogram is cropped as the outliers are
not visible on this scale.

In the experiment, we measured a time series of corrective optics command delay per frame. Figure 5 shows
the time series and the corresponding histogram.

The mean value of the corrective optics command delay is 555µs and the 99.99th percentile is 641µs, i.e. 30
corrective optics commands took longer than 641µs. The maximum value is 807µs. Since the RTC computation
time is less than the corrective optics command delay, the maximum RTC computation time of 909µs was fulfilled
in this experiment with 807µs.

5.4 Mean Shares of Corrective Optics Command Delay
The HRTC telemetry record contains seven timestamps. They provide a way to measure the delays that sum up
to the corrective optics command delay. Figure 6 depicts the mean shares of corrective optics command delay.
Most of the delays correspond to the delays described in Sec. 4.2. The two unnamed delays T3-T2 and T5-T4
correspond to the delay introduced by the pipes between stages (c.f. Fig. 2) and are negligible with a percentage
of 0.6%.

As expected, the WFC computation is the largest part of the corrective optics command delay (about 70 %).
The wait for reception of all WFS pixels is approx. 120µs and takes a share of about 22 %. The WFS frame
transmission occurs without Ethernet communication but with IPv4 interprocess communication (IPC) through
the loopback device. The number is close to the expected value when using 10GbE (115µs), i.e. its resembles
the possible final setup with 10GbE.

T1 - T0

T2 - T1
(WFS pixel reception)

21.63% (120 s)

T3 - T2

0.30% (2 s)

T4 - T3
(WFC computation)

69.45% (385 s)

T5 - T40.28% (2 s)

T6 - T5
(Corrective optics command transmission)

8.30% (46 s)

0.04% (0 s)

(First WFS
pixel transfer)

Figure 6. Mean shares of corrective optics command delay.

6. FUTURE WORK
The presented results are part of ongoing work to realize a fully functional RTC prototype fulfilling all METIS
SCAO requirements. For the final design review, a number of activities are planned to improve the prototype
with regard to functionality and to improve our understanding of its performance.

Currently, the prototype performs a wavefront reconstruction only using a static set of parameters. In order
to achieve a more realistic prototype status, the following activities are planned:

1. Implement a temporal controller. So far, only the wavefront reconstruction is done. Depending on the
computational demand of the temporal controller, more than two GPUs will be necessary in the HRTC.

2. Implement HRTC parameter update during closed loop operation. Until now, the HRTC works with fixed
parameters. This limitation is fine for first tests. In operation, it will be necessary to update parameters
like control matrices in order to optimize the AO performance. This will increase the network traffic and
will significantly impact the memory throughput demand. Amongst other things, it has to be checked if
the parameters can be updated without affecting the real-time control loop.

3. Design the SRTC. The HRTC is supervised and optimized by the SRTC. The necessary SRTC algorithms
need to be designed and implemented. The communication between HRTC and SRTC needs to be imple-
mented.

In the current design of the prototype, several modules reside in the same workstation, e.g., the simulated
WFS camera and hrtcMain. In the final deployment, these modules will be distributed to different systems on a
network which will introduce additional latencies due to communication lag. During the prototyping phase, we
intend to simulate the final deployment as close as reasonable and foresee the following tasks:

1. Implement a ELT Central Control System (CCS) simulator in order to transmit corrective optics commands
to a remote host and to receive the M4/M5 echo.

2. Setup a distributed SCAO system with clock synchronization as depicted in figure 7. Such a setup is close
to the reality at the ELT because the interprocess communication is delayed by an Ethernet network. The
precision time protocol (PTP) is used to synchronize clocks in sub-microsecond range.

PTP slave

Telemetry workstat ion

telemetryMonitor

wfsSimCamera

hrtcMain
eltCcsSim

PTP slave

ELT CCS simulation
workstat ion

PTP slave

PTP master

W F S
camera simulation

workstat ion

HRTC workstation

PTP PTP

Telemetry records
10GbE

Corrective
optics

commands
and echo

10GbE

WFS pixels

10GbE

Figure 7. Distributed experiment setup.

Additionally to the functional improvements, we intend to optimize the prototype with regard to computation
time. For the final phase of the prototyping the following activities are planned:

1. Eliminate outliers. Figure 5 shows a small number of outliers that come close to the limit of RTC compu-
tation time. We contemplate to use a real-time Linux kernel to counteract the outliers.

2. Further optimize the algorithms. We see room for improvement regarding memory management and
parallelization of the algorithms to decrease overall computation time. This might be a necessary activity
when the full control algorithm including temporal control has been implemented.

It is planned to deliver an full HRTC prototype in the final design review which is currently planned for
2021.

7. CONCLUSION
The sheer scale of the Extremely Large Telescope requires an unprecedented computational effort to drive the
adaptive optics within the given timing constraint running the AO main loop at up to 1 kHz. In this paper
we present first results of the prototyping activity for a hard real-time computer within in the METIS project.
We created a test environment that is flexible enough to test different hardware accelerators. Here we discuss a
single-node HRTC prototype using two COTS GPUs, but the design also allows multi-core (NUMA) CPUs.

Based on a MVM-reconstructor without temporal controller, we analyzed the theoretical memory throughput
straining both the network but also the local memory and came to the conclusion that the chosen hardware setup
using a single node with two GPUs should suffice to stay within the requirements.

We tested our theoretical findings in an experiment using two computers on a network, where a simulated
WFS camera resides on the same node as the HRTC main computation, and a telemetry monitor on a different
node receives the telemetry stream. For the given setup, we found that we can indeed process the WFS pixel
stream and produce a telemetry data stream at a loop rate of 1kHz. The mean computation time of 555µs stays
well within the budget of 909µs defined by the requirements. We observed a number of outliers, but these did
not exceed the budget, either.

The presented results are a snapshot of ongoing work towards the final prototype. In the following months,
we intend to add a temporal controller to get a final estimate of the demand regarding computational through-
put. Furthermore, we intend to create a more realistic distributed deployment including a simulated ELT CCS
workstation, and deploying the simulated WFS camera on its own node.

REFERENCES
[1] Brandl, B. R., Absil, O., Agócs, T., Baccichet, N., Bertram, T., Bettonvil, F., van Boekel, R., Burtscher,

L., van Dishoeck, E., Feldt, M., Garcia, P. J. V., Glasse, A., Glauser, A., Güdel, M., Haupt, C., Kenworthy,
M. A., Labadie, L., Laun, W., Lesman, D., Pantin, E., Quanz, S. P., Snellen, I., Siebenmorgen, R., and van
Winckel, H., “Status of the mid-ir elt imager and spectrograph (metis),” 10702 (2018).

[2] E-ELT Instrument Adaptive Optics Real-Time Computer Timing and Latency Considerations.
[3] Kern, P., Lena, P., Gigan, P., Fontanella, J.-C., Rousset, G., Merkle, F., and Gaffard, J.-P., “Come-on: an

adaptive optics prototype dedicated to infrared astronomy,” in [New Technologies for Astronomy], 1130,
17–28, International Society for Optics and Photonics (1989).

[4] Kern, P., Merkle, F., Gaffard, J. P., Rousset, G., Fontanella, J. C., and Lena, P., “Prototype of an adaptive
optical system for astronomical observation,” in [Real-Time Image Processing: Concepts and Technologies],
860, 9–15, International Society for Optics and Photonics (1988).

[5] “Motorola 68020.” https://en.wikipedia.org/wiki/Motorola_68020. (Accessed: 2 October 2019).
[6] Merkle, F. and Hubin, N. N., “Adaptive optics for the european very large telescope,” in [Active and Adaptive

Optical Systems], 1542, 283–292, International Society for Optics and Photonics (1991).
[7] “NAOS.” http://www.lesia.obspm.fr/NAOS.html?var_recherche=naos. (Accessed: 2 October 2019).
[8] Brandner, W., Rousset, G., Lenzen, R., Hubin, N., Lacombe, F., Hofmann, R., Moorwood, A., Lagrange,

A.-M., Gendron, E., Hartung, M., et al., “Naos+ conica at yepun: first vlt adaptive optics system sees first
light,” The Messenger 107, 1–6 (2002).

[9] Rabaud, D., Chazallet, F., Rousset, G., Amra, C., Argast, B., Montri, J., Dumont, G., Sorrente, B., Madec,
P.-Y., Gendron, E., et al., “Naos real-time computer for optimized closed-loop and online performance
estimation,” in [Adaptive Optical Systems Technology], 4007, 659–670, International Society for Optics and
Photonics (2000).

[10] “Texas Instruments TMS320C40.” http://www.ti.com/product/TMS320C40?keyMatch=TMS320C40. (Ac-
cessed: 2 October 2019).

[11] Jenkins, D. R., Basden, A. G., and Myers, R. M., “A many-core cpu prototype of an mcao and ltao rtc for
elt-scale instruments,” Monthly Notices of the Royal Astronomical Society 485(4), 5142–5152 (2019).

[12] Jenkins, D., Basden, A., and Myers, R., “A prototype architecture for elt-scale mcao and ltao based on
many core cpu technologies (poster presented at ao4elt6, quebec, canada),” (2019).

[13] Clénet, Y., Buey, T., Gendron, E., Hubert, Z., Vidal, F., Cohen, M., Chapron, F., Sevin, A., Fédou, P.,
Barbary, G., et al., “The micado first-light imager for the elt: towards the preliminary design review of the
micado-maory scao,” in [Adaptive Optics Systems VI], 10703, 1070313, International Society for Optics
and Photonics (2018).

[14] Gratadour, D., Morris, T., Biasi, R., Deneux, H., Bernard, J., Buey, J.-T., Doucet, N., Ferreira, F., Laine,
M., Perret, D., et al., “Prototyping ao rtc using emerging high performance computing technologies with
the green flash project,” in [Adaptive Optics Systems VI], 10703, 1070318, International Society for Optics
and Photonics (2018).

[15] “NVIDIA DGX-1 datasheet.” https://images.nvidia.com/content/technologies/deep-learning/
pdf/61681-DB2-Launch-Datasheet-Deep-Learning-Letter-WEB.pdf. (Accessed: 9 October 2019).

[16] Ferreira, F., Sevin, A., Bernard, J., and Gratadour, D., “Micado-maory scao rtc system prototyping: as-
sessing the real-time capability of gpu (poster presented at ao4elt6, quebec, canada),” (2019).

[17] “ZeroC Ice: a remote procedure call framework.” https://zeroc.com/products/ice. (Accessed: 2 October
2019).

[18] Wavefront Sensor Cameras MUDPI Data Packet Description.
[19] “GeForce 20 series.” https://en.wikipedia.org/wiki/GeForce_20_series. (Accessed: 2 October 2019).

https://en.wikipedia.org/wiki/Motorola_68020
http://www.lesia.obspm.fr/NAOS.html?var_recherche=naos
http://www.ti.com/product/TMS320C40?keyMatch=TMS320C40
https://images.nvidia.com/content/technologies/deep-learning/pdf/61681-DB2-Launch-Datasheet-Deep-Learning-Letter-WEB.pdf
https://images.nvidia.com/content/technologies/deep-learning/pdf/61681-DB2-Launch-Datasheet-Deep-Learning-Letter-WEB.pdf
https://zeroc.com/products/ice
https://en.wikipedia.org/wiki/GeForce_20_series

	AO RTC in METIS SCAO
	Related Work
	HRTC Prototype Design
	HRTC Performance Evaluation Setup
	Memory Throughput Analysis
	WFS Pixel Stream
	Telemetry Stream
	Data Transfer between Host and Hardware Accelerator
	MVM Memory Throughput

	Timings

	HRTC Performance Evaluation
	Completeness of Frame Transmission and Processing
	Telemetry Stream
	Timings
	Mean Shares of Corrective Optics Command Delay

	Future Work
	Conclusion

