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ABSTRACT 

The Nonlinear Curvature Wavefront Sensor (nlCWFS), first proposed by Guyon,[1] determines wavefront shape from
images of a reference beacon in a number of “Fresnel planes” between the pupil and focal plane of a telescope.  We
previously described a fast linear algorithm[2] that used refractive strong scintillation theory as an inspiration to use
appropriately smoothed or binned Fresnel plane images to recover low spatial frequency aberrations.  Since a given
aberration causes both linear and nonlinear irradiance variations, we had suggested that the linear method be used to
estimate the larger aberrations and that an unspecified nonlinear algorithm be used to estimate the nonlinear residual.  In
this paper we show that while there is always a nonlinear residual, if we only use the linear algorithm in a closed loop
AO system, the nonlinear residual will never be an important term in the error  budget.  This greatly simplifies the
nlCWFS system concept, allowing a closed-loop AO system to be driven from a linear algorithm operating on images
from a selection of Fresnel plane cameras.  The relationship between a localized variation in the irradiance and the pupil
phase has a spatial frequency structure that can be used to select the Fresnel planes.  The required number of Fresnel
planes increases with  D/r0.  The required image processing can be parallelized per-camera, including binning, spatial
moments, normalization, and contributions to the estimated wavefront.  
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1. INTRODUCTION 

The  Nonlinear  Curvature  Wavefront  Sensor (nlCWFS)[1,3] determines  the  pupil  plane  wavefront  aberrations  by
examining the irradiance from a beacon in a number of defocused image planes located between the pupil and focal
plane of a telescope. Since the irradiance patterns have structure at the full diffraction limit of the telescope and use light
from the entire  pupil,  it  is  possible to  obtain  very  high accuracy  and efficiency.   The potential  advantages  of  the
technique are independent of the algorithm used for extracting the wavefront from the images, so long as all of the
diffraction-limited  information  is  included.   To  accurately  estimate  the  pupil  plane  aberrations  responsible  for  a
particular set of images, an iterative nonlinear wavefront retrieval algorithm is commonly used [1,3], which is presently too
slow to be used in an astronomical adaptive optics (AO) system.  

Noting that the Fresnel scale (Rf = sqrt(λz) for an infinite focal length, where z is the distance to the pupil plane) runs
from 0 at the pupil to infinite at the focal plane, any amount of phase aberration will lead to strong scintillation within
the telescope, unless it is limited by the pupil mask.  Strong scattering can be described as when aberrations due to the
medium (characterized by the Fried length r0) dominate geometric effects such as the difference between plane waves
and spherical waves at a particular range (characterized by the Fresnel scale), or r0 < Rf.  A feature of strong scattering is
the appearance of larger-scale irradiance structure that refractively focuses the light over a region of approximately  
zθ0 =  z(λ/r0),  which  modulates  the  smaller-scale  scintillation  patterns  with spatial  scales  characterized  by r0.   We
previously suggested[2] that the Fresnel  plane images minus the average intensity be smoothed (or binned) to better
isolate the refractive  scintillation and then  linearly  relate  the  delta-irradiance  pixels  to  the pupil  aberrations  to  the
aberrations using random test aberration patterns.  The result was similar to linear curvature wavefront sensing, but with
a more complicated relationship between the wavefront and the irradiance fluctuation.  There is always a nonlinear
residual,  so we previously considered  including a nonlinear  final  wavefront  estimation step that  could  possibly be
simpler due to the not having to deal with the full amount of the wavefront aberrations.  

In this paper we show that when used to correct atmospheric aberrations in an adaptive optics closed loop, the portion of
the wavefront error (WFE) that is correctly estimated by the linear algorithm reduces the residuals until they eventually



become less  than  the  nonlinear  residuals,  at  which  point  they  are  quite  small.   However,  for  typical  astronomical
telescopes and atmospheric conditions, other sources of error dominate and there is no point at which the nonlinear
residual is dominant.  This brings us to the conclusion that a nonlinear curvature wavefront sensor could be used with
only the approximate linear algorithm and still extract the full potential performance of the system.  This is entirely due
to applying the linear algorithm in a closed loop, which reduces the residuals including the nonlinear portion.  It does not
imply that  this is  a viable strategy for  accurate  wavefront  estimation outside of a closed-loop wavefront  correction
system.

2. THE NONLINEAR CONTRIBUTION TO THE RESIDUAL WFE

In the absence of noise, a “perfect” linear estimator of a system with a linear response to the input will have a zero
residual error.  Since our reconstructor is estimated from measurements of the full nonlinear irradiance resulting from a
test  actuator  pattern,  it  will  never be “perfect”,  but  will  have some systematic  linear  error.   An “imperfect” linear
reconstructor will result in a residual WFE that is linearly proportional to the initial WFE.  In general, nonlinear physical
effects look like “noise” to a linear algorithm.  But since the first nonlinear Taylor series correction is second-order, the
leading-order nonlinear residual WFE should be at least quadratic in the initial WFE.  By examining a scatter plot of
initial and single-correction WFE from a numerical experiment, we should see this behavior.

To do this, we simulated a 1m AO-equipped telescope with a 16x16 actuator DM and a 4-camera nlCWFS.   The tests
used continuous fields to compute the irradiance (i.e. no photon noise),  and no other sources of noise were included.
We modeled a 1m telescope with an 18mm telescope exit pupil, followed by propagation to 4 Fresnel planes at 6.4 cm,
16 cm, 40 cm, and 100 cm beyond the exit pupil.  For the purposes of this analysis, all Fresnel planes were assumed to

Figure 1. This shows the estimated residual WFE after subtracting the result of the linear algorithm, as a function of starting 
WFE.  The nonlinear contribution to the Fresnel plane irradiance increases with greater WFE, leaving us with a greater residual
error that does not follow the linear model.  



use 700 nm light.   The example phase screens were synthesized to give an r0 of 50 cm at 500 nm, which corresponds
roughly with the residual WFE that we might achieve in closed loop.  Deriving a reconstructor with a more realistic r0

(or rms WFE with an ordered set of modes) is not recommended since the nonlinearity greatly increases the noise in the
training set.  

Both  the  reconstructor  training  data  and  the  tests  were  performed  using  the  phase  screens  to  introduce  the  test
aberrations.   For  the  nonlinearity  tests,  only  the  correction  at  the  actuator  locations  was  computed,  intentionally
separating out the effect of fitting error.  The test phase screen was sampled at the DM actuator to represent the initial
wavefront, while the full resolution of the phase screens was used in creating the incident field and Fresnel plane images.
The Fresnel plane images were computed, normalized, and processed into the delta images.  The delta-image pixels were
then multiplied by the reconstructor matrix to get the estimated actuator values.  These were subtracted from the original
actuator values and the residual rms WFE was computed.  This is repeated with a range of starting WFE values, the
results are displayed in Figure 1.  

As described above, we expect a linear and quadratic range in the residual WFE.  The quadratic portion allows us to
estimate the significance of nonlinearities when using the linear reconstruction algorithm.  The level of the linear error is
a function of the accuracy of the linear reconstructor and is not essential to the physics of the problem.  In this case, the
linear residual dominates for initial WFE < 25 nm, which is well below a non-extreme AO system’s best performance.
Even so, an improved reconstructor could be estimated that would leave nonlinear residuals at even lower initial WFE
values.  The quadratic range resulting from nonlinearity is clearly seen.  It is possible to draw a “break-even line” that
shows where the WFE before and after are statistically the same.  If the initial WFE is worse than this, a single update
based on the linear algorithm will make the wavefront error worse.  However, this never even comes close to happening
over the range of aberrations from uncorrected atmospheric seeing to high Strehl  correction.  Therefore,  we would
expect that a nlCWFS AO system will make the correction better with every iteration until until calibration errors or
some other source of noise or error stops it.  With fairly faint guide stars (say 12 th magnitude) and poor seeing with an r0

of about 5 cm, we might expect a residual WFE of about 200 nm.  Even if it were 100 nm, the nonlinear residual error
would fall far below it, giving the best possible AO performance without ever having to deal with making a nonlinear
wavefront estimate.  In an “extreme” AO system, the components are selected to give smaller estimation and fitting
errors, along with using brighter guide stars resulting in less photon noise.  Even in these situations it is still unlikely that
nonlinear wavefront estimates will be needed, and if they were it would appear as a slowdown in the convergence of the
closed loop over a limited dynamic range of WFE.  This brings us to the surprising conclusion that an AO system can be
used with a nlCWFS using only a linear wavefront reconstruction algorithm.

3. PLACING THE FRESNEL PLANES

When designing a nlCWFS, we first need to consider the range of spatial frequencies that we wish to correct, and then
decide on the placement of the cameras to give the desired spatial frequency coverage.  The relationship can be seen at
the actuator resolution by examining the numerically-derived reconstructor.   This can be Fourier transformed to linearly
relate that spatial spectrum of the wavefront and the Fresnel plane irradiance with a transfer function that varies with
spatial frequency  κ.  We can also derive it in weak scattering directly, giving the PSD transfer function as a transfer
function that we could call the Fresnel-Talbot filter

ΦI (κ)=sin(κ
2
λ z /4π)Φφ(κ). (1)

This filter gives us the well-known low-spatial-frequency loss of sensitivity, as well as the alternating sign of the Talbot
effect, and nulls in the response at certain spatial frequencies.  From this we see that having only one Fresnel plane
would leave us blind to these spatial frequencies, while two or more planes can still leave blind spots unless we are
careful to place them so that we have reasonable coverage over the desired range of spatial frequencies in at least one of
the camera images. Considering tip-tilt as corresponding to 1 Fourier cycle/D and focus as 1.5 cycle/D, we need to get
information from about 1.5 cycles/D to (D/2r0,science) cycles/D for diffraction-limited correction at the science wavelength.
The required spatial frequency range is about D/3r0,science. By moving the post-pupil distance of the Fresnel planes, we can
try to cover as much of the desired spatial frequency range as possible.  An example of this with four cameras is shown
in Figure 2.  Smaller telescope apertures can require fewer cameras, which further aids in measurement by allowing
more wavefront sensor photons to go to each camera.   



An all-linear processing algorithm for the nlCWFS has the further advantage of being very parallelizable.  Each camera
can be read, binned, processed, and multiplied by its part of the reconstructor matrix in parallel with the other cameras.
Read noise is minimized by optically scaling the camera pixels to match the desired binning size.   It  shouldn’t be
necessary to use pixels smaller than the Fried length at the science wavelength.  Improved isolation from nonlinearity
and lower estimation error noise comes with larger pixels, but greater operational dynamic range comes from smaller
pixels.  At this point all of the required information is available to design and implement a practical nlCWFS AO system.

4. SUMMARY

We have shown that  the linear  wavefront  estimation algorithm[2] never  needs  to be supplemented with a nonlinear
wavefront estimate to give high-performance AO correction.  This will allow processing at speeds that are sufficient to
drive a practical real-time AO system.  The advantages of the nlCWFS are not due to the nonlinearity, but rather the
resolution and light-gathering power of the full aperture.  The linear algorithm allows us to use that to our advantage
with  a  simple  processing  design.   We  also  showed  how  the  Fresnel-Talbot  transfer  function  determines  the  best
placement of the camera planes, as well as how many cameras are required in a particular nlCWFS AO system.  
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Figure 2: An example of four camera planes with the Fresnel-Talbot 
spatial filter shown in a different color for each range.  The horizontal 
axis is in wavefront Fourier cycles/D.  The purple dashed curve is the 
maximum response for that spatial frequency, while the dot-dashed curve 
is the sum.  How deep of a dip in the combined transfer function that can 
be tolerated depends on the SNR at that spatial frequency, which requires 
deeper analysis of the particular use case.
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